

ESTUDOS HIDROGEOLÓGICOS PARA SUBSIDIAR A GESTÃO SUSTENTÁVEL DOS RECURSOS HÍDRICOS SUBTERRÂNEOS NA REGIÃO METROPOLITANA DE MACEIÓ.

Relatório Final - RF Volume III

Testes de Aquífero, Potenciometria, Modelo Numérico, Vulnerabilidade Natural dos Aquíferos e Riscos de Contaminação

República Federativa do Brasil

Dilma Vana Rousseff

Presidente

Ministério do Meio Ambiente

Izabella Mônica Vieira Teixeira Ministra

Agência Nacional de Águas

Diretoria Colegiada

Paulo Rodrigues Vieira

Vicente Andreu – Diretor-Presidente Dalvino Troccoli Franca João Gilberto Lotufo Conejo Paulo Lopes Varella Neto

Superintendência de Implementação e Programas e Projetos

Ricardo Medeiros de Andrade

Humberto Cardoso Gonçalves

Gerência de Águas Subterrâneas

Fernando Roberto de Oliveira (Gerente)

Adriana Niemeyer Pires Ferreira

Fabrício Bueno da Fonseca Cardoso

Flávio Soares do Nascimento

Leonardo de Almeida

Márcia Tereza Pantoja Gaspar

Marco Vinicius Castro Gonçalves

Comissão Técnica de Acompanhamento e Fiscalização

Fabrício Bueno da Fonseca Cardoso (ANA)

Fernando Roberto de Oliveira (ANA)

Flávio Soares do Nascimento (ANA)

Hugo Fernandes dos Santos Pedrosa (SEMARH/AL)

Jorge Francisco de Araújo (SEMARH/AL)

Rochana de Andrade Lima (SEMARH/AL)

Wilton José Silva da Rocha (SEMARH/AL)

Consórcio PROJETEC/TECHNE (Coordenação Geral)

João Guimarães Recena

Luiz Alberto Teixeira

Antonio Carlos de Almeida Vidon

Gerência do Contrato

Marcelo Casiuch

Membros da Equipe Técnica Executora

Waldir Duarte Costa (Coordenador)

Almany Costa Santos

Audrey Oliveira de Lima

Carine Antunes Correia Marinho

Dante Melo

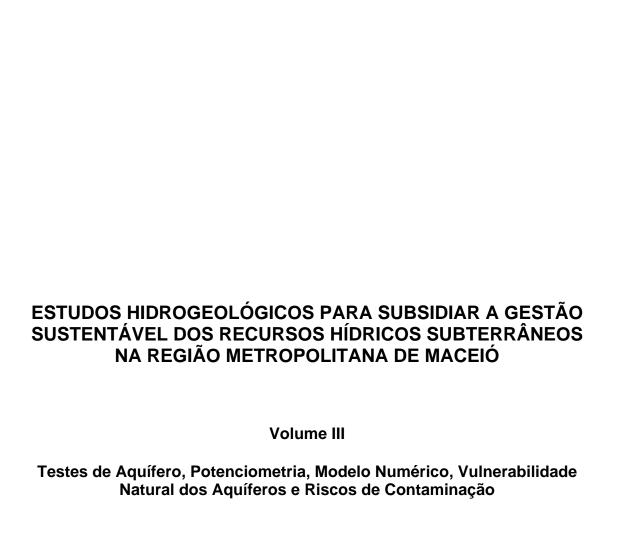
Francis Miller Judas Virtuoso da Silva

Givanildo Oliveira

Iremar Accioly Bayma

João Manoel Filho

José Coelho de Araújo Filho


José Geilson Alves Demetrio

Maria Carolina da Motta Agra

Mario Amilde Valença dos Santos

Simone Rosa e Silva

Terezinha Matilde de Menezes Uchôa

Setembro/2011

Agência Nacional de Águas – ANA

Setor Policial Sul, Área 5, Quadra 3, Bloco B, L e M

CEP: 70610-200, Brasília – DF PABX: 2109-5400 / 2109-5252

Endereço eletrônico: http://www.ana.gov.br

Equipe:

Agência Nacional de Águas – ANA Superintendência de Implementação de Programas e Projetos – SIP

Elaboração e execução:

Consórcio PROJETEC-TECHNE

Todos os direitos reservados

É permitida a reprodução de dados e de informações, desde que citada a fonte.

Estudos Hidrogeológicos para Subsidiar a Gestão Sustentável dos Recursos Hídricos Subterrâneos na Região Metropolitana de Maceió.

Vol. III - Testes de Aquífero, Potenciometria, Modelo Numérico, Vulnerabilidade Natural dos Aquíferos e Riscos de Contaminação.

Brasília: ANA, SIP, 2011.

- 1. Recursos hídricos
- 2. Região Metropolitana de Maceió
- I. Agência Nacional de Águas
- II. Consórcio PROJETEC-TECHNE.

Sumário

9. TESTES DE AQUÍFERO	14
9.1. Resultados Obtidos	16
9.1.1. Testes com Poço de Observação	16
9.1.2. Testes sem Piezômetro	31
9.2. Comparação com Dados Existentes	39
9.3. Distribuição Espacial das Transmissividades	40
9.4. Conclusões	42
10. POTENCIOMETRIA	43
10.1. Análise da Evolução da Potenciometria com o Tempo	43
10.1.1. Potenciometria da Década 70	43
10.1.2. Potenciometria da Década 80	45
10.1.3 Potenciometria da Década 90	47
10.1.4. Potenciometria da Década 2000	49
10.1.5. Potenciometria Atual (2010 em Duas Etapas)	51
10.2. Comparação da Potenciometria Atual (nas Duas Etapas) com a Potenciometria	
da Década 2000	
10.3. Considerações Finais	60
11. MODELO NUMÉRICO EM DIFERENÇAS FINITAS DO FLUXO SUBTERRÂNEO	
E DA INTERFACE MARINHA DA REGIÃO METROPOLITANA DE MACEIÓ	61
11.1. A Área Modelada	61
11.2. Discretização do Modelo	61
11.3. Geometria do Modelo	64
11.4. Modelo Conceitual	64
11.5. Parâmetros Hidrogeológicos	67
11.6. Condições de Contorno	67
11.7. Calibração	70
11.8. Validação	77
11.9. Simulação de Cenário	83

11.10. Conclusões	92
12. VULNERABILIDADE NATURAL DOS AQUÍFEROS E RISCOS DE CONTAMINAÇÃO	93
12.1. Avaliação da Vulnerabilidade dos Aquíferos	94
12.2. Caracterização da Carga Contaminante	107
12.3. Principais Atividades Potencialmente Geradoras de Cargas Contaminantes e seus Tipos Contaminantes mais Comuns	108
12.4. Risco de Contaminação do Aquífero	129
BIBLIOGRAFIA	137

ÍNDICE DE QUADROS

Quadro 9.1 - Dados do Teste de Vazão do poço bombeado	. 16
Quadro 9.2 - Dados do Teste de Vazão do poço de observação	. 17
Quadro 9.3 - Dados do Teste de Vazão do poço bombeado	. 19
Quadro 9.4 - Dados do Teste de Vazão do poço de observação	. 20
Quadro 9.5 - Dados do Teste de Vazão do poço bombeado	. 22
Quadro 9.6 - Dados do Teste de Vazão do poço de observação	. 23
Quadro 9.7 - Dados do Teste de Vazão do poço bombeado	. 25
Quadro 9.8 - Dados do Teste de Vazão do poço de observação	. 26
Quadro 9.9 - Dados do Teste de Vazão do poço bombeado	. 28
Quadro 9.10 – Avaliação dos coeficientes hidrodinâmicos a partir dos dados do poço das curvas de rebaixamento.	
Quadro 9.11 – Resumo dos coeficientes hidrodinâmicos avaliados	. 30
Quadro 9.12 - Dados do Teste de Vazão do poço bombeado	. 31
Quadro 9.13 - Dados do Teste de Vazão do poço bombeado	. 33
Quadro 9.14 - Dados do Teste de Vazão do poço bombeado	. 35
Quadro 9.15 - Dados do Teste de Vazão do poço bombeado	. 37
Quadro 9.16 – Coeficientes de transmissividade (T), condutividade hidráulica (K) e armazenamento (S) dos estudos mais antigos realizados na Bacia Alagoas-Sergipe.	. 39
Quadro 9.17 – Parâmetros hidrodinâmicos da SALGEMA	. 39
Quadro 9.18 – Coeficientes de transmissividade (T) e condutividade hidráulica (K) no aquífero Barreiras	
Quadro 9.19 – Valores médios de transmissividade nos aquíferos Maceió, Poção e Coqueiro Seco	. 40
Quadro 9.20 – Parâmetros hidrodinâmicos do sistema aquífero Barreiras/Marituba avaliados no município de Maceió (Rocha, 2005)	. 40

Quadro 10.1 – Medição de níveis estáticos com cotas potenciométricas	. 54
Quadro 10.2 – Situação de desativação de poços da CASAL	. 60
Quadro 11.1 – Carga hidráulica na RMM entre 1960 e 1970	. 74
Quadro 11.2 – Variação da quantidade de poços construídos	. 77

ÍNDICE DE FIGURAS

Figura 9.1 – Gráfico de rebaixamento do poço bombeado (Bolão)	18
Figura 9.2 – Gráfico de rebaixamento do poço de observação	18
Figura 9.3 – Gráfico de rebaixamento do poço bombeado (Reservatório Feitosa)	21
Figura 9.4 – Gráfico de rebaixamento do poço de observação	21
Figura 9.5 – Gráfico de rebaixamento do poço bombeado (Reservatório Farol)	24
Figura 9.6 – Gráfico de rebaixamento do poço de observação (Reservatório Farol).	24
Figura 9.7 – Gráfico de rebaixamento do poço bombeado (Santa Lucia)	27
Figura 9.8 – Gráfico de rebaixamento do poço de observação	27
Figura 9.9 – Gráfico de rebaixamento do poço bombeado (Benedito Bentes)	29
Figura 9.10 – Gráfico de rebaixamento do poço bombeado (Carlos Fortes)	32
Figura 9.11 – Gráfico de recuperação do poço bombeado (Carlos Fortes)	32
Figura 9.12 – Gráfico de rebaixamento do poço bombeado (Arauy)	34
Figura 9.13 – Gráfico de recuperação do poço bombeado (Arauy)	34
Figura 9.14 – Gráfico de rebaixamento do poço bombeado (Arasil)	36
Figura 9.15 – Gráfico de recuperação do poço bombeado (Arasil)	36
Figura 9.16 – Gráfico de rebaixamento do poço bombeado (Brava)	38
Figura 9.17 – Gráfico de recuperação do poço bombeado (Brava)	38
Figura 9.18 – Mapa de isotransmissividade na região central de Maceió	41
Figura 10.1 – Mapa potenciométrico da RMM na década 70	44
Figura 10.2 – Mapa potenciométrico da RMM na década de 80	46
Figura 10.3 – Mapa potenciométrico da RMM na década 90	48
Figura 10.4 – Mapa potenciométrico da década de 2000.	50
Figura 10.5 – Mapa potenciométrico da década de 2010 – 1ª Campanha – Setembro/2009	52

Figura 10.6 – Mapa potenciométrico da década de 2010 – 2ª Campanha – Fevereiro/2010.	53
Figura 11.1 – Mapa de situação e localização da área modelada	62
Figura 11.2 – Discretização da área modelada	63
Figura 11.3 – Perfis Geológicos.	65
Figura 11.4 – Correspondência entre o perfil geológico e o perfil do modelo	66
Figura 11.5 – Distribuição da condutividade hidráulica para a camada 01	68
Figura 11.6 – Distribuição da condutividade hidráulica para a camada 02	69
Figura 11.7 – Condições de contorno	71
Figura 11.8 – Distribuição da recarga na área modelada	72
Figura 11.9 – Relação entre as cargas calculadas (calculated head) x cargas observadas (observed head)	73
Figura 11.10 – Potenciometria inicial	75
Figura 11.11 – Distribuição da salinidade em condições de equilíbrio	76
Figura 11.12 – Cargas calculadas (calculated head) x cargas observadas (observe head).	
Figura 11.13 – Concentração calculada (calculated concentration) x Concentração observada (observed concentration)	
Figura 11.14 – Potenciometria para a validação do modelo (31/12/2009)	81
Figura 11.15 – Rebaixamentos após 43 anos de bombeamento	82
Figura 11.16 – Distribuição da salinidade em 31/12/2009	84
Figura 11.17 – Detalhe da potenciometria em Maceió para o cenário 01	85
Figura 11.18 – Rebaixamento em Maceió para o cenário 01	86
Figura 11.19 – Posição da interface marinha ao final da simulação do cenário 01	87
Figura 11.20 – Potenciometria para o cenário 02	89
Figura 11.21 – Rebaixamentos para o cenário 02	90

Figura 11.22 – Interface marinha para o cenário 02	91
Figura 12.1 - Sistema GOD para avaliação da vulnerabilidade do aquífero à contaminação (Foster <i>et al.</i> , 1988)	97
Figura 12.2 - Mapa geológico com os poços utilizados pela metodologia GOD na Região Urbana de Maceió	99
Figura 12.3 – Mapa de Vulnerabilidade com Fontes potenciais de Contaminação dáguas subterrâneas na área urbana de Maceió	
Figura 12.4 – Mapa de Vulnerabilidade do aquífero Barreiras em toda a Região Metropolitana de Maceió.	. 102
Figura 12.5 – Mapa geológico simplificado com as posições dos ensaios geofísicos dos poços tubulares utilizados no trabalho de Elis <i>et al.</i> (2004)	
Figura 12.6 – Perfil Estratigráfico A–B, com base nos perfis de poços tubulares (El al., 2004).	
Figura 12.7 – Modelo 2D obtido por processamento dos dados do caminhamento elétrico da linha C1 (Elis <i>et al.</i> , 2004)	. 106
Figura 12.8 – Mapa de localização da área estudada por Ferreira Neto <i>et al.</i> (2002	•
Figura 12.9 - Aterro de lixo da cidade de Barra de Santo Antonio	. 122
Figura 12.10 - Aterro de lixo da cidade de Paripueira.	. 122
Figura 12.11 - Aterro de lixo da cidade de Messias.	. 123
Figura 12.12 - Aterro de lixo da cidade de Rio Largo.	. 123
Figura 12.13 - Aterro de lixo das cidades de Santa Luzia e Coqueiro Seco	. 124
Figura 12.14 - Aterro de lixo da cidade de Satuba.	. 124
Figura 12.15 - Aterro de lixo da cidade de Pilar.	. 125
Figura 12.16 - Aterro de lixo da cidade de Marechal Deodoro	. 125
Figura 12.17 - Aterro de lixo da cidade de Barra de São Miguel	. 126
Figura 12.18 - Aterro de lixo da cidade de Maceió	. 126

Figura	a 12.19 - Esquema conceitual para avaliação do risco de contaminação - Fost	er
	et al. (1993)	131
Figura	a 12.20 – Mapa de discretização da vulnerabilidade do aquífero Barreiras e do)
	número de fontes potenciais de contaminação na RMM	134
Figura	a 12.21 - Mapa de Risco de Contaminação das águas subterrâneas na área	
	urbana de Maceió	135
Figura	a 12.22 – Mapa de risco de contaminação para toda a Região Metropolitana d	е
	Maceió	136

ÍNDICE DE TABELAS

Tabela 12.1 – Índices GOD e classes de vulnerabilidade
Tabela 12.2 – Valores para o parâmetro G do índice GOD (Foster, 1987)96
Tabela 12.3 – Valores para o parâmetro O do índice GOD (Foster, 1987)96
Tabela 12.4 – Valores para o parâmetro D do índice GOD (Foster, 1987)
Tabela 12.5 - Principais atividades potencialmente geradoras de cargas contaminantes (Foster & Hirata, 1988)
Tabela 12.6 – Atividades potencialmente geradoras de cargas contaminantes e seus tipos contaminantes mais comuns
Tabela 12.7 – Fontes de contaminação e seus tipos contaminantes mais comuns 114
Tabela 12.8 - Resumo das características químicas e dos índices de risco para atividades industriais comuns
Tabela 12.9 – Caracterização das Empresas do Distrito Industrial Governador Luiz Cavalcante na RMM117
Tabela 12.10 - Tempo de sobrevivência (em dias) de microorganismos patogênicos nos resíduos sólidos
Tabela 12.11 - Constituintes primários de esgotos de um sistema municipal (adaptado de Manaham, 1993)
Tabela 12.12 – Valor numérico do índice de risco com base na vulnerabilidade natural e no número de fontes potenciais de poluição cadastradas em 2009

9. TESTES DE AQUÍFERO

Valores confiáveis dos parâmetros hidrodinâmicos são obtidos por meio de testes de bombeamento, os quais devem ser executados por pessoal qualificado e os resultados dos testes devem ser conduzidos por meio de métodos adequados de conformidade com as condições hidrogeológicas. A realização de um teste de bombeamento, embora sendo uma tarefa simples, é dispendiosa e, ocasionalmente, a sua interpretação se torna bastante difícil.

Os testes de bombeamento, numa classificação mais ampla, podem ser divididos em: testes de aquífero e testes de produção.

Os testes de aquífero consistem no bombeamento de um poço com uma vazão constante e no acompanhamento da evolução dos rebaixamentos produzidos em um ou mais poços de observação e têm como finalidade a determinação dos parâmetros hidrodinâmicos dos sistemas aquíferos: transmissividade (T), coeficiente de armazenamento (S) e condutividade hidráulica (K). Quando inexistem poços de observação ou piezômetros, não pode ser avaliado o coeficiente de armazenamento no teste de aquífero realizado.

Os testes de produção consistem na realização de um bombeamento de múltiplas etapas e no registro da evolução dos rebaixamentos no próprio poço bombeado, e têm por finalidade a determinação das perdas de carga totais que ocorrem num poço. O somatório de todas as perdas de cargas existentes corresponde ao rebaixamento total que ocorre no poço, as quais podem ser divididas em lineares e não lineares.

As perdas lineares (perdas no aquífero, na transição para o pré-filtro e devido à penetração parcial) ocorrem no aquífero e nas vizinhanças do poço em regime laminar e são diretamente proporcionais à vazão de bombeamento; as não lineares (perdas turbulentas nas vizinhanças do poço e no pré-filtro, por penetração parcial da água no poço e perdas axiais de ascensão da água até a bomba), ocorrem no próprio poço e em suas vizinhanças em regime de fluxo turbulento e são diretamente proporcionais à vazão de bombeamento elevada a um expoente n.

Os parâmetros hidrodinâmicos dos aquíferos variam muito de um local para outro, em função da variação de espessura, heterogeneidade e anisotropia dos sistemas aquíferos, sem contar ainda com o nível de qualidade dos testes de bombeamento.

A maioria das empresas não realiza testes de bombeamento dentro das normas da ABNT e ABAS e grande parte apresenta dados bastante inconsistentes. Normalmente as empresas de perfuração realizam testes de vazão, após o término da construção dos poços, com o objetivo de dimensionar o equipamento de bombeamento. Nestes testes é medido o nível estático, o rebaixamento total do nível no final do bombeamento, as vazões e raramente a recuperação do nível d'água é obtida depois de cessado o bombeamento.

No cálculo dos parâmetros hidrodinâmicos dos sistemas explotados na área de estudo, foi utilizado o software GWW - *Ground Water for Windows* desenvolvido pelas Nações Unidas em 1994. Este programa permite que seja especificado se o aquífero pode ser confinado ou não.

Os poços devem ser totalmente penetrantes, mas correções para a penetração parcial são incluídas para o caso de aquíferos não drenantes. O programa permite que os poços bombeados sejam parcialmente penetrantes.

No âmbito do presente estudo foram realizados 10 (dez) testes de aquífero, sendo 5 (cinco) deles com medição de rebaixamento em poço de observação especialmente construído para essa finalidade.

Os poços em que foi construído ao lado um poço de observação foram todos pertencentes à Companhia de Saneamento de Alagoas (CASAL), concessionária do sistema de abastecimento d'água do Estado, por duas razões principais: a primeira era que os poços da CASAL eram mais bem construídos e confiáveis quanto às informações existentes e, em segundo, a construção de um poço de observação ao lado do poço produtor exigia a permissão do proprietário o que nem sempre se conseguia com facilidade.

Antes da perfuração dos poços de observação foi efetuado um contato pessoal com o presidente da empresa (CASAL) a fim de obter a devida permissão para a perfuração e para a realização do teste que se seguiria, tendo o referido mandatário concordado sem qualquer restrição com a realização dos testes de aquífero.

Após a perfuração dos cinco poços de observação, a coordenação do consórcio procurou a direção da empresa para acertar os dias em que os poços a serem testados deveriam ser paralisados, antes do teste para recuperação dos níveis estáticos e após o bombeamento para anotação da recuperação gradativa dos níveis.

Para surpresa e desapontamento foi declarado pela diretoria que para a realização dos testes teriam que ser cumpridas as seguintes condições:

- Os poços a testar somente seriam paralisados 12 horas antes do início do bombeamento (na noite anterior a data do teste);
- Ao ser iniciado o teste, a água não poderia ser desperdiçada e sim continuar acoplada ao reservatório, ou seja, não se poderia efetuar a medição da vazão na saída do poço e no reservatório era impraticável devido à falta de acesso.

Após o encerramento do bombeamento (24 horas) o poço não poderia ser paralisado para medição da recuperação no próprio poço e no poço de observação.

A imposição dessas condições dificultou bastante a tarefa e não impediu totalmente a realização dos testes por haver a Secretaria de Estado do Meio Ambiente e Recursos Hídricos (SEMARH) disponibilizado um equipamento de medição de vazão que mede a velocidade do fluxo da água e o transforma em descarga por interações matemáticas no próprio equipamento.

Nos testes de aquífero se costuma medir os rebaixamentos e a recuperação dos níveis da água dentro do poço bombeado e dentro do poço de observação, sendo a curva de recuperação mais fiel para interpretação do teste, pois não depende tanto das flutuações de vazão que podem ocorrer durante o bombeamento.

Por outro lado, o impedimento de se colocar um tubo de escoamento circular para garantir uma vazão constante também influiu negativamente para a realização dos testes de aquífero, não se sabendo até onde a medição pelo equipamento acoplado à tubulação obtém dados confiáveis da vazão do poço.

Todos os poços testados no âmbito do presente estudo captavam o sistema aquífero Barreiras/Marituba tendo em vista que nesse sistema está perfurada a maior parte dos poços para abastecimento público e privado da cidade de Maceió.

9.1. Resultados Obtidos

9.1.1. Testes com Poço de Observação

a) Poço do Bolão

Quadro 9.1 - Dados do Teste de Vazão do poço bombeado.

Cliente : PROJETEC/ TECHNE	Bombeamento: 24h00min	
Poço : PBL 02	Profundidade do poço: 100 m	
Localização: BOLÃO	Início: 15/04/10 Hora: 07h00min	
Município : MACEIÓ	Término: 16/04/10 Hora: 07h00min	
Estado : ALAGOAS	NE: 07,00 m ND: 10,22 m Rebaix.: 3,22 m	

Tempo	Rebaix.	ND	Vazão
(min)	(m)	(m)	(m ³ /h)
1	2,00	9,00	
2	0,42	9,42	88,0
3	0,02	9,44	
4	0,00	9,44	88,0
5	0,06	9,50	
6	0,01	9,51	88,0
8	0,01	9,52	
10	0,00	9,52	88,0
15	0,01	9,53	
20	0,00	9,53	88,0
25	0,11	9,64	
30	0,00	9,64	88,0
40	0,07	9,71	
50	0,10	9,81	88,0
60	0,15	9,96	
70	0,09	10,05	88,0
80	0,06	10,11	
100	0,09	10,20	88,0
120	0,02	10,22	
150	0,00	10,22	88,0
180	0,00	10,22	
240	0,00	10,22	88,0
300	0,00	10,22	
360	0,00	10,22	88,0
420	0,00	10,22	
480	0,00	10,22	88,0
540	0,00	10,22	
600	0,00	10,22	88,0
720	0,00	10,22	
840	0,00	10,22	88,0
960	0,00	10,22	
1080	0,00	10,22	88,0
1200	0,00	10,22	
1320	0,00	10,22	88,0
1440	0,00	10,22	

Quadro 9.2 - Dados do Teste de Vazão do poço de observação.

Cliente: ANA	
Poço: PIEZOMETRO PBL 02	Distância para o poço bombeado: 5 m
Localização: BOLÃO	Início: 15/04/10 Hora: 05h30min
Município: MACEIÓ	Término: 16/04/10 Hora: 05h30min
Estado: ALAGOAS	NE: 07,62 m ND: 8,50 m Rebaix.:0,88 m

Tempo	Rebaix.	ND
(min)	(m)	(m)
1	0,27	7,89
2	0,04	7,93
	0,03	7,96
4	0,03	7,98
3 4 5	0,02	7,99
6	0,01	8,00
8	0,00	8,00
10	0,00	8,01
15	0,01	8,02
20	0,01	8,03
25	0,00	8,03
30	0,00	8,05
		8,10
40	0,05	0,10
50	0,05	8,15
60	0,01	8,16
70	0,02	8,18
80	0,04	8,22
100	-0,01	8,21
120	0,29	8,50
150	0,04	8,54
180	-0,03	8,51
240	0,00	8,51
300	-0,01	8,50
360	0,00	8,50
420	0,00	8,50
480	0,00	8,50
540	0,00	8,50
600	0,01	8,51
720	-0,01	8,50
840	0,00	8,50
960	0,00	8,50
1080	0,00	8,50
1200	0,00	8,50
1320	0,00	8,50
1440	0,00	8,50

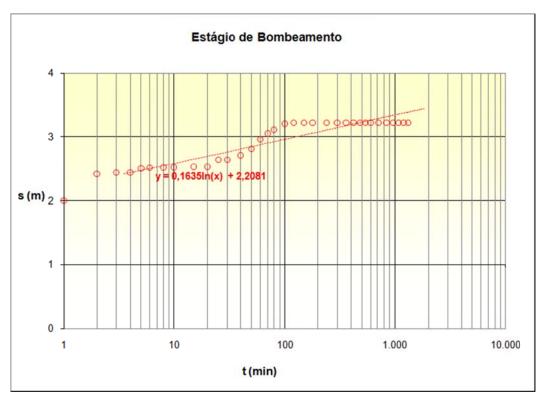


Figura 9.1 – Gráfico de rebaixamento do poço bombeado (Bolão).

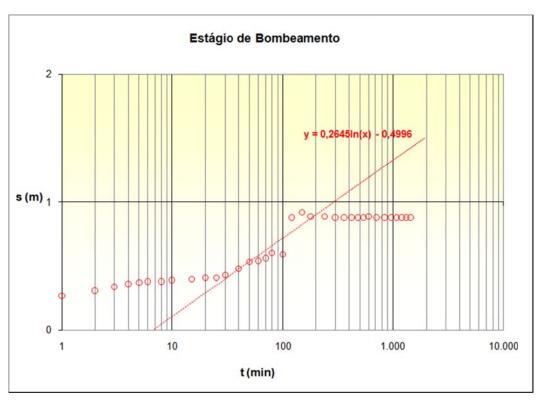


Figura 9.2 – Gráfico de rebaixamento do poço de observação.

b) Poço do Reservatório do Feitosa

Quadro 9.3 - Dados do Teste de Vazão do poço bombeado.

Cliente: PROJETEC/TECHNE	Bombeamento: 24h00min	
Poço: RESERVATÓRIO	Profundidade do poço: 140,00 m	
Localização: FEITOSA	Início: 07/04/10 Hora: 06h00min	
Município: MACEIÓ	Término: 08/04/10 Hora: 06h00min	
Estado: ALAGOAS	NE: 42,80 m ND: 49,72 m Rebaix.: 6,92 m	

	ILPAINA	1110	1 11 2
Tempo	Rebaix.	ND	Vazão
(min)	(m)	(m)	(m³/h)
1	5,39	48,19	40,00
2	0,00	48,19	
3	0,00	48,19	
4	-0,11	48,08	40,00
5	0,81	48,89	
6	0,14	49,03	
8	0,04	49,07	
10	0,02	49,09	40,00
15	0,06	49,15	
20	0,05	49,20	
25	0,09	49,29	
30	0,06	49,35	
40	0,02	49,37	40,00
50	0,05	49,42	
60	0,07	49,49	
70	0,07	49,56	40,00
80	0,02	49,58	
100	0,02	49,60	40,00
120	0,03	49,63	
150	0,03	49,66	
180	0,03	49,69	40,00
240	0,03	49,72	
300	0,00	49,72	40,00
360	0,00	49,72	
420	0,00	49,72	40,00
480	-0,01	49,71	
540	0,01	49,72	40,00
600	0,00	49,72	
720	-0,01	49,71	
840	0,01	49,72	40,00
960	0,00	49,72	
1080	0,00	49,72	40,00
1200	0,00	49,72	
1320	0,00	49,72	
1440	0,00	49,72	40,00
			, ,

Quadro 9.4 - Dados do Teste de Vazão do poço de observação.

Cliente: PROJETEC/TECHNE	
Poço: RESERVATÓRIO	Distância para o poço bombeado: 5 m
Localização: FEITOSA	Início: 07/04/10 Hora: 06h00min
Município: MACEIÓ	Término: 08/04/10 Hora: 06h00min
Estado: ALAGOAS	NE: 38,21 m ND: 38,88 m Rebaix.: 0,67 m

Tempo	Rebaix.	ND
(min)	(m)	(m)
1	0,26	38,47
2	0,09	38,56
3	0,06	38,62
4	0,05	38,67
5	0,04	38,71
6	0,04	38,75
8	0,03	38,78
10	0,02	38,80
15	0,02	38,82
20	0,01	38,83
25	0,01	38,84
30	0,01	38,85
40	0,01	38,86
50	0,00	38,86
60	0,01	38,87
70	0,00	38,87
80	0,00	38,87
100	0,00	38,87
120	0,01	38,88
150	0,00	38,88
180	0,00	38,88
240	0,00	38,88
300	0,00	38,88
360	0,00	38,88
420	0,00	38,88
480	0,00	38,88
540	0,00	38,88
600	0,00	38,88
720	0,00	38,88
840	0,00	38,88
960	0,00	38,88
1080	0,00	38,88
1200	0,00	38,88
1320	0,00	38,88
1440	0,00	38,88

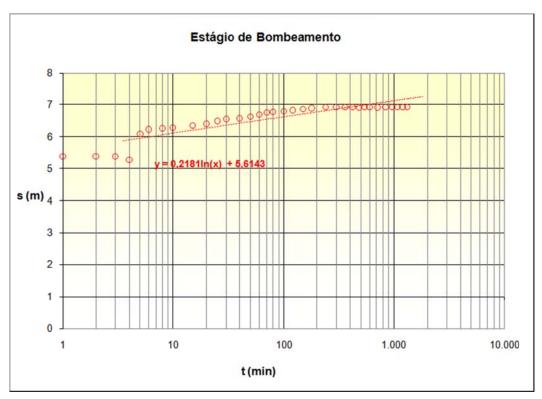


Figura 9.3 – Gráfico de rebaixamento do poço bombeado (Reservatório Feitosa).

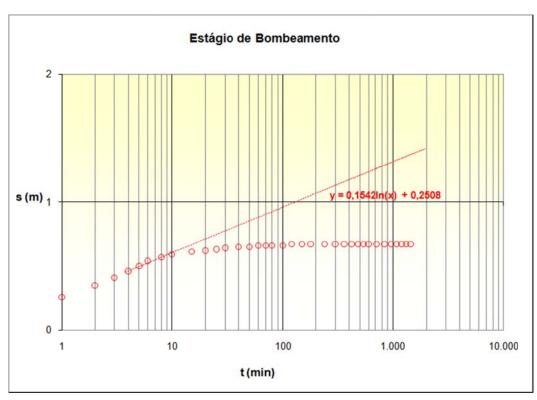


Figura 9.4 – Gráfico de rebaixamento do poço de observação.

c) Poço do Reservatório do Farol

Quadro 9.5 - Dados do Teste de Vazão do poço bombeado.

Cliente: PROJETEC/TECHNE	Bombeamento: 24h00min	
Poço: 2 RESERVATÓRIO 2 - CASAL	Profundidade do poço: 145,00 m	
Localização: FAROL	Início: 30/03/10 Hora: 06h00min	
Município: MACEIÓ	Término: 31/03/10 Hora: 06h00min	
Estado: ALAGOAS	NE: 42,40 m ND: 52,41 m Rebaix.: 10,01 m	

Tempo	Rebaix.	ND	Vazão
(min)	(m)	(m)	(m ³ /h)
1	9,04	51,44	0,82
2	0,09	51,53	0,80
3	0,03	51,56	0,77
4	0,05	51,61	0,72
5	0,04	51,65	0,76
6	0,05	51,70	0,73
8	0,03	51,73	0,70
10	0,05	51,78	0,71
15	0,04	51,82	0,72
20	0,04	51,86	0,75
25	0,04	51,90	0,77
30	0,04	51,94	0,77
40	0,03	51,97	0,80
50	0,03	52,00	0,77
60	0,00	52,00	0,66
70	0,06	52,06	0,72
80	0,04	52,10	0,78
100	0,03	52,13	0,52
120	0,02	52,15	0,63
150	0,05	52,20	0,60
180	-0,01	52,19	0,57
240	0,01	52,20	0,52
300	0,21	52,41	0,58
360	0,00	52,41	13,76
420	0,00	52,41	13,08
480	0,00	52,41	12,76
540	0,00	52,41	14,06
600	0,00	52,41	13,80
720	0,00	52,41	13,66
840	0,00	52,41	13,60
960	0,00	52,41	13,55
1080	0,00	52,41	13,60
1200	0,00	52,41	13,62
1320	0,00	52,41	13,80
1440	0,00	52,41	13,68

Quadro 9.6 - Dados do Teste de Vazão do poço de observação.

Cliente: PROJETEC/TECHNE	
Poço: 2 RESERVATÓRIO 2 - CASAL	Distância para o poço bombeado: 10 m
Localização: FAROL	Início: 30/03/10 Hora: 06h00min
Município: MACEIÓ	Término: 31/03/10 Hora: 06h00min
Estado: ALAGOAS	NE: 39,00 m ND: 39,58 m Rebaix.: 0,58 m

Tempo	Rebaix.	ND
(min)	(m)	(m)
1	0,28	39,28
2	0,07	39,35
3	0,05	39,40
4	0,06	39,46
5	0,04	39,50
6	0,03	39,53
8	0,02	39,55
10	0,02	39,57
15		
20	0,00	39,57
25		
30	0,00	39,57
40	0,00	39,57
50	0,00	39,57
60	0,00	39,57
70	0,00	39,57
80	0,00	39,57
100	0,00	39,57
120	0,00	39,57
150	0,00	39,57
180		39,57
240	0,01	39,58
300		
360	0,00	39,58
420		
480	0,00	39,58
540		
600	0,00	39,58
720		
840	0,00	39,58
960		
1080	0,00	39,58
1200		•
1320	0,00	39,58
1440	0,00	39,58
	,	,

Figura 9.5 – Gráfico de rebaixamento do poço bombeado (Reservatório Farol).

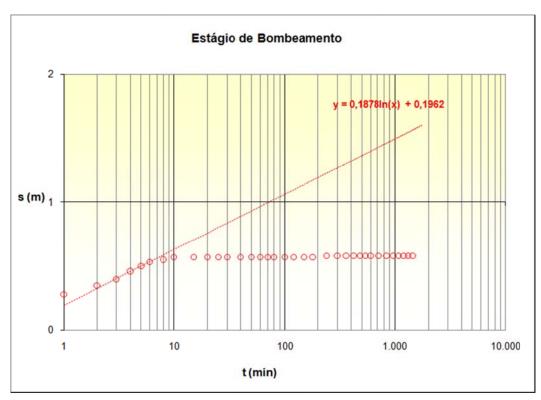


Figura 9.6 – Gráfico de rebaixamento do poço de observação (Reservatório Farol).

d) Poço de Santa Lucia

Quadro 9.7 - Dados do Teste de Vazão do poço bombeado.

Cliente : PROJETEC/TECHNE	Bombeamento : 24h00min
Poço :SANTA LUCIA - AEROCLUBE CASAL	Profundidade do Poço : 100 m
Localização: SANTA LUCIA	Início : 18/05/2010 Hora: 06h00min
Município : MACEIÓ	Término : 19/05/2010 Hora: 06h00min
Estado : ALAGOAS	NE: 41,40 m ND: 47,37 m Rebaix.: 5,97 m

REDAIAAWENTO			
Tempo	Rebaix.	ND	Vazão
(min)	(m)	(m)	(m³/h)
1	3,40	42,40	31,02
2	0,14	42,26	31,02
3	-0,05	42,21	31,03
4	0,00	42,21	
5	0,07	42,28	
6	-0,02	42,26	29,56
8	0,00	42,26	
10	-0,06	42,20	29,56
15	0,00	42,20	
20	0,06	42,26	28,30
25	0,04	42,30	
30	0,01	42,31	27,10
40	0,05	42,36	
50	0,64	43,00	26,40
60	0,22	43,22	
70	0,88	44,10	
80	1,20	45,30	26,44
100	0,70	46,00	
120	0,50	46,50	
150	0,02	46,52	26,40
180	0,85	47,37	
240	0,00	47,37	
300	0,00	47,37 47,37	26,50
360	0,00	47,37	
420	0,00	47,37 47,37 47,37	26,41
480	0,00	47,37	
540	0,00	47,37	
600	0,00	47,37	26,40
720	0,00	47,37	
840	0,00	47,37 47,37	
960	0,00	47,37	26,30
1080	0,00	47,37	
1200	0,00	47,37	26,40
1320	0,00	47,37	
1440	0,00	47,37	26,40
<u> </u>			

Quadro 9.8 - Dados do Teste de Vazão do poço de observação.

Cliente: PROJETEC/TECHNE	
Poço: SANTA LUCIA - AEROCLUBE CASAL	Distância para o poço bombeado: 10 m
Localização: SANTA LUCIA	Início: 18/05/2010 Hora: 06h00min
Município: MACEIÓ	Término: 19/05/2010 Hora: 06h00min
Estado: ALAGOAS	NE: 41,40 ND: 47,37 Rebaix.: 5,97 m

Tompo		ND
Tempo	ND (m)	ND (res)
(mim)	(m)	(m)
1	0,84	42,24
2	0,17	42,41
3	0,04	42,45
4	0,03	42,48
5	0,00	42,48
6	0,01	42,49
8	0,03	42,52
10	0,02	42,54
15	0,03	42,57
20	0,04	42,61
25	0,02	42,63
30	0,03	42,66
40	0,03	42,69
50	0,01	42,70
60	0,02	42,72
70	0,02	42,74
80	0,01	42,75
100	0,00	42,75
120	0,01	42,76
150	0,00	42,76
180	0,00	42.76
240	0,00	42,76
300	0,00	42,76 42,76
360	0,00	42,70
420	0,00	42,76
480	0,00	42,76
540	0,00	42,76
600	0,00	42,76
720	0,00	42,76
840	0,00	42,76
960	0,00	42,76
1080	0,00	42,76
1200	0,00	42,76
1320	0,00	42,76
1440	0,00	42,76
	-,	,

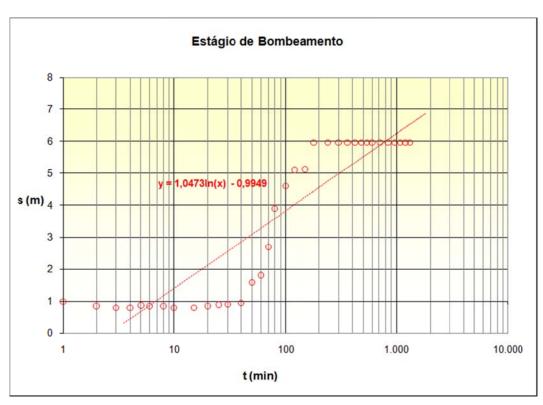


Figura 9.7 – Gráfico de rebaixamento do poço bombeado (Santa Lucia).

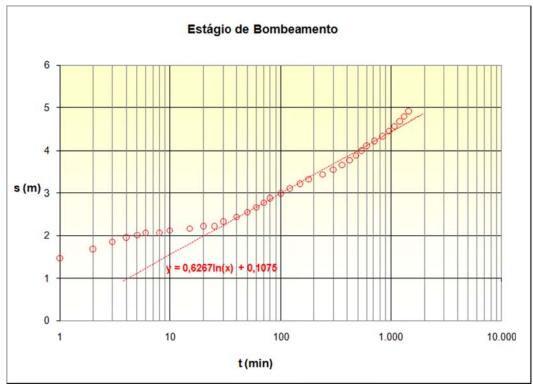


Figura 9.8 – Gráfico de rebaixamento do poço de observação.

e) Poço de Benedito Bentes

Quadro 9.9 - Dados do Teste de Vazão do poço bombeado.

1.Cliente : PROJETEC	Bombeamento : 24 horas
Poço : BENEDITO BENTES	Profundidade da Bomba : 79 metros
Localização: BENEDITO BENTES	Inicio : 07/04/2010
Município : MACEIÓ	Termino : 07/04/2010
Estado : AL	NE: 39,43 m ND: 44,75 m Rebaix.: 5,32 m

REBAIXAMENTO

Tempo	ND	Vazão
(min)	(m)	(m ³ /h)
1	41,18	(,
2	41,50	
3	42,60	
4	42,70	5,36
5	42,65	,,,,,
6	42,70	
8	42,70	
10	42,72	5,36
15	42,90	5,36
20	43,00	
25	43,05	5,36
30	43,09	
40	43,16	5,36
50	43,12	
60	43,21	5,36
70	43,26	,
80	43,28	5,36
100	43,17	-
120	43,25	5,36
150	43,30	5,36
180	43,40	·
240	43,55	5,36
300	44,67	5,36
360	44,69	5,36
420	44,70	
480	44,70	5,36
540	44,75	
600	44,76	5,36
720	44,75	
840	44,75	
960	44,76	5,36
1080	44,73	
1200	44,75	
1320	44,75	5,36
1440	44,75	5,36

Observação: o poço de observação não reagiu permanecendo o mesmo nível durante todo o bombeamento do poço de teste.

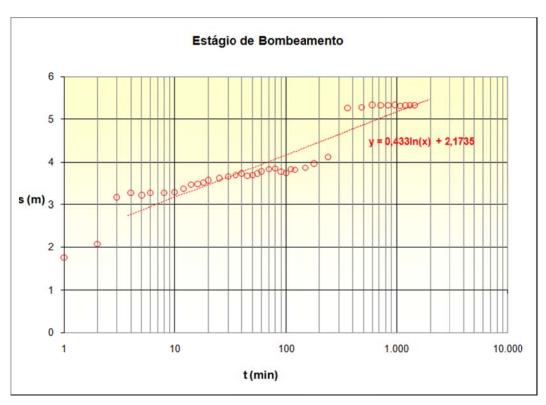


Figura 9.9 – Gráfico de rebaixamento do poço bombeado (Benedito Bentes).

Quadro 9.10 – Avaliação dos coeficientes hidrodinâmicos a partir dos dados dos poços e das curvas de rebaixamento.

Poço	Q (m³/h)	NE (m)	ND (m)	s (m)	Q/s (m³/h/m)	Equação da Curva de melhor ajuste s = a.ln[(t ₀ +tb)/t ₀] - b	a	b	t ₀	Δs	T (m²/s)	b (m)	K (m/s)	r (m)	s
PBL 02	88	7	10,22	3,22	27,329	y =0,1635.ln(x) + 2,2081	0,164	2,2081	1,36E-06	0,38	1,19E-02	93,00	1,28E-04	0	
PBL 02 pz	88	7,62	8,5	0,88	100,000	y =0,2645.ln(x) - 0,4996	0,265	-0,4996	6,61E+00	0,61	7,34E-03	93,00	7,90E-05	5	4,37E-03
Reservatório	40	42,8	49,72	6,92	5,780	y =0,2181.ln(x) + 5,6143	0,218	5,6143	6,61E-12	0,50	4,05E-03	97,20	4,17E-05	0	
Reservatório pz	40	38,21	38,88	0,67	59,701	y =0,1542.ln(x) + 0,2508	0,154	0,2508	1,97E-01	0,36	5,73E-03	97,20	5,89E-05	5	1,01E-04
Reservatório 2	13,6	42,4	52,41	10,01	1,359	y =0,1502.ln(x) + 9,024	0,15	9,024	8,08E-27	0,35	2,00E-03	41,70	4,79E-05	0	
Reservatório 2 pz	13,6	39	39,58	0,58	23,448	y =0,1878.ln(x) + 0,1962	0,188	0,1962	3,52E-01	0,43	1,60E-03	41,70	3,83E-05	5	5,062E-05
Sta Lúcia	26,4	41,4	47,37	5,97	4,42211	$y = 1,0473.\ln(x) - 0,9949$	1,047	-0,9949	2,59E+00	2,41	5,57E-04	108,60	5,12E-06	0	
Sta Lúcia pz	26,4	41,4	46,196	4,796	5,50407	$y = 0.6267.\ln(x) + 0.1075$	0,627	0,1075	8,42E-01	1,44	9,30E-04	108,60	8,56E-06	5	7,051E-05
Benedito Bentes	53,6	39,43	44,75	5,32	10,0752	y = 0,433.ln(x) + 2,1735	0,433	2,1735	6,61E-03	1,00	2,73E-03	110,57	2,47E-05	0	

Quadro 9.11 – Resumo dos coeficientes hidrodinâmicos avaliados.

Poço	Coeficiente de Transmissividade T (m²/s)	Condutividade Hidráulica K (m/s)	Coeficiente de Armazenamento S (adimensional)
Bolão (poço bombeado)	1,19.10 ⁻²	1,28.10 ⁻⁴	
Bolão (poço de observação)	7,34.10 ⁻³	7,90.10 ⁻⁵	4,37.10 ⁻³
Reservatório Feitosa (poço bombeado)	4,05.10 ⁻³	4,17.10 ⁻⁵	
Reservatório Feitosa (poço observação)	5,73.10 ⁻³	5,89.10 ⁻⁵	1,01.10 ⁻⁴
Reservatório Farol (poço bombeado)	2,00.10 ⁻³	4,79.10 ⁻⁵	
Reservatório Farol (poço observação)	1,60.10 ⁻³	3,83.10 ⁻⁵	5,06.10 ⁻⁵
Santa Lucia (poço bombeado)	5,57.10 ⁻⁴	5,12.10 ⁻⁶	
Santa Lucia (poço observação)	9,30.10 ⁻⁴	8,56.10 ⁻⁶	7,05.10 ⁻⁵
Benedito Bentes (poço bombeado)	2,73.10 ⁻³	2,47.10 ⁻⁵	

9.1.2. Testes sem Piezômetro

a) Poço de Carlos Fortes

Quadro 9.12 - Dados do Teste de Vazão do poço bombeado.

1 Cliente :	CARLOS	FORTES I	MELRO NET	0	Bombeamento: 1,5 HP - LEÃO						
			DFUNDIDAD		Profundidade da Bomba: 58 METROS						
	io: FAROL		or erronome		Inicio: 08/12/2009 Hora: 10:30						
	: MACEI				Termino: 09/12/2009 Hora: 10:30						
Estado : A					NE: 42,12 m ND: 44,02 m Rebaixa.: 1,90 m						
250000	21100110	Rebaix	amento		Recuperação						
	Tempo	ND	Rebaixamento	Vazão	Cap. especifica	Tempo		ND	Rebaixamento		
Hora	(min)	(m)	(m)	(m³/h)	(m³/h)/m	Hora	(min)	(m)	(m)		
10:31	1	43,81	1,62	4,5	2,778	10:31	1	43,02	0,90		
10:32	2	44,04	1,85	4,5	2,432	10:32	2	42,47	0,35		
10:33	3	44,07	1,88	4,5	2,394	10:33	3	42,29	0,17		
10:34	4	44,08	1,88	4,5	2,394	10:34	4	42,23	0,11		
10:35	5	44,08	1,89	4,5	2,381	10:35	5	42,22	0,10		
10:36	6	44,08	1,89	4,5	2,381	10:36	6	42,21	0,09		
10:38	8	44,08	1,89	4,5	2,381	10:38	8	42,2	0,08		
10:40	10	44,08	1,89	4,5	2,381	10:40	10	42,19	0,07		
10:45	15	44,08	1,89	4,5	2,381	10:45	15	42,19	0,07		
10:50	20	44,08	1,89	4,5	2,381	10:50	20	42,19	0,07		
10:55	25	44,08	1,89	4,5	2,381	10:55	25	42,19	0,07		
11:00	30	44,08	1,89	4,5	2,381	11:00	30	42,19	0,07		
11:10	40	44,08	1,89	4,5	2,381						
11:20	50	44,08	1,89	4,5	2,381						
11:30	60	44,08	1,89	4,5	2,381						
11:40	70	44,08	1,89	4,5	2,381						
11:50	80	44,12	1,93	4,5	2,332						
12:10	100	44,12	1,93	4,5	2,332						
12:30	120	44,08	1,89	4,5	2,381						
13:00	150	44,05	1,86	4,5	2,419						
13:30	180	44,03	1,84	4,5	2,446						
14:30	240	44,12	1,93	4,5	2,332						
15:30	300	44,02	1,94	4,5	2,320						
16:30	360	44,02	1,83	4,5	2,459						
17:30	420	44,02	1,83	4,5	2,459						
18:30	480	44,02	1,83	4,5	2,459						
19:30	540	44,02	1,83	4,5	2,459						
20:30	600	44,02	1,83	4,5	2,459						
22:30	720	44,02	1,83	4,5	2,459						
00:30	840	44,02	1,83	4,5	2,459						
02:30	960	44,02	1,83	4,5	2,459						
04:30	1080	44,02	1,83	4,5	2,459						
06:30	1200	44,02	1,83	4,5	2,459						
08:30	1320	44,02	1,83	4,5	2,459						
10:30	1440	44,02	1,83	4,5	2,459						

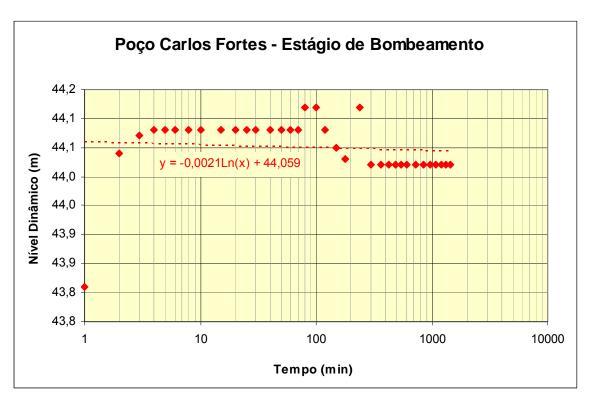


Figura 9.10 – Gráfico de rebaixamento do poço bombeado (Carlos Fortes).

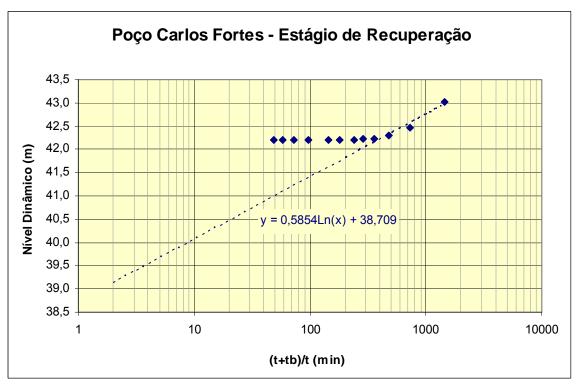


Figura 9.11 – Gráfico de recuperação do poço bombeado (Carlos Fortes).

Valor da Transmissividade: $T = 1,697 \times 10^{-4} \text{ m}^2/\text{s}$ Valor da Condutividade Hidráulica: $K = 3,03 \times 10^{-4} \text{ m/s}$

b) Poço de Arauy

08:30

10:30

1320

1440

25,03

25,03

3,68

3,68

12,000

12,000

3,260

3,260

08:30

10:30

1320

1440

21,35

21,35

Quadro 9.13 - Dados do Teste de Vazão do poço bombeado.

1.Cliente	: SR. ARA	UY			Bombeamento: 3,5 HP - LEÃO					
Poço : 6"	80 METRO	OS PROFU	NDIDADE		Profundidade da Bomba: 60 METROS					
Localizaç	ão: GRACI	ILIANO R	AMOS		Inicio: 08/12/2009 Hora: 10:30					
Município	: MACEI	(Ó			Termino: 10/12/2009 Hora: 10:30					
Estado: ALAGOAS					NE: 21,35 n	n N	D : 25,03 ı	n Rebaix	: 3,68 m	
Rebaixamento							Recu	peração		
	Tempo	ND	Rebaixamento	Vazão	Cap. especifica	Tempo		ND	Recuperação	
Hora	(min)	(m)	(m)	(m³/h)	(m³/h)/m	Hora	(min)	(m)	(m)	
10:31	1	24,62	3,27	12,410	3,795	10:31	1	22,50	2,53	
10:32	2	24,70	3,35	12,410	3,704	10:32	2	22,21	0,29	
10:33	3	24,74	3,39	12,410	3,660	10:33	3	22,13	0,08	
10:34	4	24,79	3,44	12,410	3,607	10:34	4	22,06	0,07	
10:35	5	24,78	3,43	12,410	3,618	10:35	5	22,01	0,05	
10:36	6	24,77	3,42	12,410	3,628	10:36	6	21,96	0,05	
10:38	8	24,79	3,44	12,410	3,607	10:38	8	21,88	0,08	
10:40	10	24,79	3,44	12,410	3,607	10:40	10	21,83	0,05	
10:45	15	24,82	3,47	12,410	3,576	10:45	15	21,74	0,07	
10:50	20	24,85	3,50	12,410	3,545	10:50	20	21,67	0,07	
10:55	25	24,86	3,51	12,410	3,535	10:55	25	21,57	0,1	
11:00	30	24,87	3,52	12,000	3,525	11:00	30	21,51	0,06	
11:10	40	24,88	3,53	12,000	3,399	11:10	40	21,44	0,07	
11:20	50	24,90	3,55	12,000	3,380	11:20	50	21,41	0,03	
11:30	60	24,91	3,56	12,000	3,370	11:30	60	21,39	0,02	
11:40	70	24,92	3,57	12,000	3,361	11:40	70	21,38	0,01	
11:50	80	24,93	3,58	12,000	3,351	11:50	80	21,36	0,02	
12:10	100	24,95	3,60	12,000	3,333	12:10	100	21,36	0	
12:30	120	24,96	3,61	12,000	3,324	12:30	120	21,36	0	
13:00	150	24,98	3,63	12,000	3,305	13:00	150	21,36	0	
13:30	180	24,99	3,64	12,000	3,296	13:30	180	21,36	0	
14:30	240	25,00	3,65	12,000	3,287	14:30	240	21,35	0,01	
15:30	300	25,02	3,67	12,000	3,269	15:30	300	21,35	0	
16:30	360	25,03	3,68	12,000	3,260	16:30	360	21,35	0	
17:30	420	25,03	3,68	12,000	3,260	17:30	420	21,35	0	
18:30	480	25,04	3,69	12,000	3,260	18:30	480	21,35	0	
19:30	540	25,03	3,68	12,000	3,260	19:30	540	21,35	0	
20:30	600	25,03	3,68	12,000	3,260	20:30	600	21,35	0	
22:30	720	25,03	3,68	12,000	3,260	22:30	710	21,35	0	
00:30	840	25,03	3,68	12,000	3,260	00:30	840	21,35	0	
02:30	960	25,03	3,68	12,000	3,260	02:30	960	21,35	0	
04:30	1080	25,03	3,68	12,000	3,260	04:30	1080	21,35	0	
06:30	1200	25,03	3,68	12,000	3,260	06:30	1200	21,35	0	

0

0

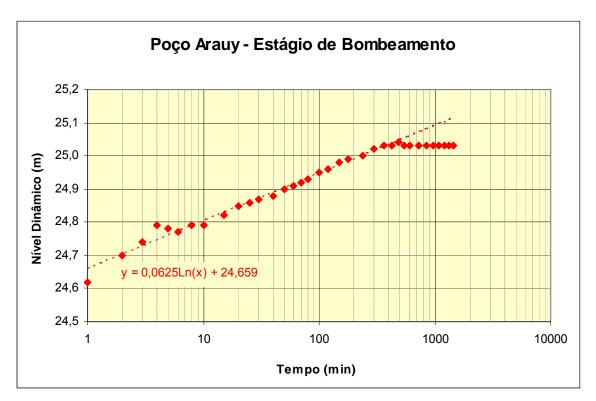


Figura 9.12 – Gráfico de rebaixamento do poço bombeado (Arauy).

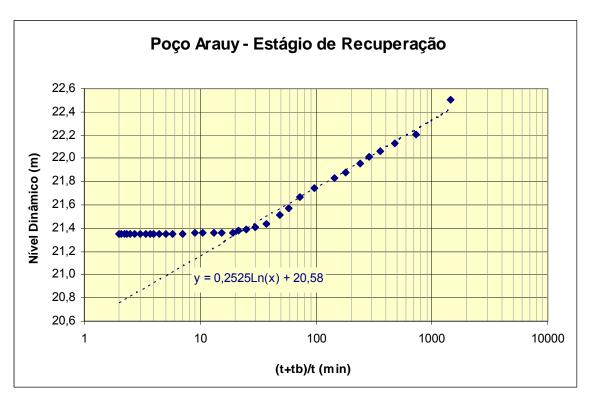


Figura 9.13 – Gráfico de recuperação do poço bombeado (Arauy).

Valor da Transmissividade: $T = 1,050 \times 10^{-3} \text{ m}^2/\text{s}$ Valor da Condutividade Hidráulica: $K = 2,19 \times 10^{-5} \text{ m/s}$

c) Poço da ARASIL

Quadro 9.14 - Dados do Teste de Vazão do poço bombeado.

1.Cliente : ARASIL					Bombeamento: 1 HP - LEÃO						
Poço: 4"	64 METR	OS DE PR	OFUNDIDA	DE	Profundidade da Bomba: 48 METROS						
Localizaçã	ão: DISTR	ITO INDU	JSTRIAL LU	IZ	Inicio: 09/12/2009 Hora: 14:30						
Município	: MACEI	Ó			Termino : 10/12/2009 Hora : 14:30						
Estado : A	LAGOAS				NE: 15,70 r	n ND	: 16,56 m	Rebai	ix.: 0,86 m		
		Rebaix	amento								
	Tempo	ND	Rebaixamento	Vazão	Cap. especifica		Tempo ND		Recuperação		
Hora	(min)	(m)	(m)	(m³/h)	(m³/h)/m	Hora	(min)	(m)	(m)		
14:31	1	16,53	0,83	3,41	4,108	14:31	1	15,78	0,78		
14:32	2	16,56	0,86	3,41	3,965	14:32	2	15,75	0,03		
14:33	3	16,57	0,86	3,41	3,965	14:33	3	15,73	0,02		
14:34	4	16,59	0,89	3,41	3,831	14:34	4	15,72	0,01		
14:35	5	16,58	0,88	3,41	3,875	14:35	5	15,70	0,02		
14:36	6	16,61	0,91	3,41	3,747	14:36	6	15,70	0		
14:38	8	16,59	0,89	3,41	3,831	14:38	8	15,70	0		
14:40	10	16,56	0,86	3,41	3,965	14:40	10	15,70	0		
14:45	15	16,54	0,84	3,41	4,059	14:45	15	15,70	0		
14:50	20	16,56	0,86	3,41	3,965	14:50	20	15,70	0		
14:55	25	16,56	0,86	3,41	3,965	14:55	25	15,70	0		
15:00	30	16,56	0,86	3,24	3,767	15:00	30	15,70	0		
15:10	40	16,56	0,86	3,24	3,767	15:10	40	15,70	0		
15:20	50	16,56	0,86	3,24	3,767	15:20	50	15,70	0		
15:30	60	16,56	0,86	3,24	3,767	15:30	60	15,70	0		
15:40	70	16,56	0,86	3,24	3,767	15:40	70	15,70	0		
15:50	80	16,56	0,86	3,24	3,767	15:50	80	15,70	0		
16:10	100	16,56	0,86	3,24	3,767	16:10	100	15,70	0		
16:30	120	16,56	0,86	3,24	3,767	16:30	120	15,70	0		
17:00	150	16,56	0,86	3,24	3,767	17:00	150	15,70	0		
17:30	180	16,56	0,86	3,24	3,767	17:30	180	15,70	0		
18:30	240	16,56	0,86	3,24	3,767	18:30	240	15,70	0		
19:30	300	16,56	0,86	3,24	3,767	19:30	300	15,70	0		
20:30	360	16,56	0,86	3,24	3,767	20:30	360	15,70	0		
21:30	420	16,56	0,86	3,24	3,767	21:30	420	15,70	0		
22:30	480	16,56	0,86	3,24	3,767	22:30	480	15,70	0		
23:30	540	16,56	0,86	3,24	3,767	23:30	540	15,70	0		
00:30	600	16,56	0,86	3,24	3,767	00:30	600	15,70	0		
02:30	720	16,56	0,86	3,24	3,767	02:30	720	15,70	0		
04:30	840	16,56	0,86	3,24	3,767	04:30	840	15,70	0		
06:30	960	16,56	0,86	3,24	3,767	06:30	960	15,70	0		
08:30	1080	16,56	0,86	3,24	3,767	08:30	1080	15,70	0		
10:30	1200	16,56	0,86	3,24	3,767	10:30	1200	15,70	0		
12:30	1320	16,56	0,86	3,24	3,767	12:30	1320	15,70	0		
14:30	1440	16,56	0,86	3,24	3,767	14:30	1440	15,70	0		

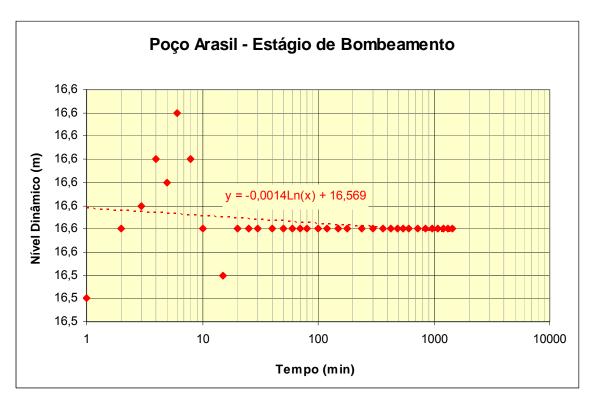


Figura 9.14 – Gráfico de rebaixamento do poço bombeado (Arasil).

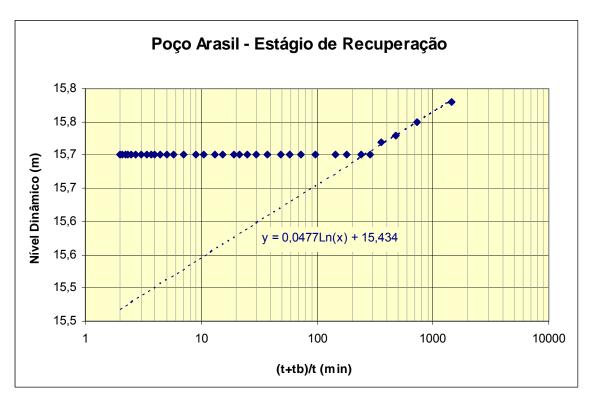


Figura 9.15 – Gráfico de recuperação do poço bombeado (Arasil).

Valor da Transmissividade: $T = 1,501 \times 10^{-3} \text{ m}^2/\text{s}$ Valor da Condutividade Hidráulica: $K = 2,08 \times 10^{-5} \text{ m/s}$

d) Poço da BRAVA

Quadro 9.15 - Dados do Teste de Vazão do poço bombeado.

1.Cliente:	BRAVA S	SERVIÇOS	SLTDA		Bombeamento	o: 4 HP - 1	LEÃO	•	•		
Poço: 4"	88 METRO	OS DE PR	OFUNDIDAD	ÞΕ	Profundidade	da Bomba	: 72 MET	ROS			
Localizaçã	io: SITIO	SÃO JORO	GE		Inicio: 13/12/	2009	Hora: 9:3	0			
Município	: MACEI	Ó			Termino: 14/	12/2009	Hora: 10:	30			
Estado : A	LAGOAS				NE: 56,48 m	ND:	58,20 m	Rebaix.	: 1,72 m		
		Rebaix	amento				Recu	peração	ação		
	Tempo	ND	Rebaixamento	Vazão	Cap. especifica		Tempo	ND	Recuperação		
Hora	(min)	(m)	(m)	(m³/h)	(m³/h)/m	Hora	(min)	(m)	(m)		
09:31	1	58,26	1,78	3,811	2,14	09:31	1	56,59	1,61		
09:32	2	58,28	0,02	3,811	190,55	09:32	2	56,55	0,04		
09:33	3	58,30	0,02	3,811	190,55	09:33	3	56,54	0,01		
09:34	4	58,32	0,02	3,811	190,55	09:34	4	56,50	0,04		
09:35	5	58,27	-0,05	3,811	-76,22	09:35	5	56,40	0,1		
09:36	6	58,29	0,02	3,811	190,55	09:36	6	56,50	-0,1		
09:38	8	58,30	0,01	3,811	381,10	09:38	8	56,50	0		
09:40	10	58,29	-0,01	3,811	-381,10	09:40	10	56,49	0,01		
09:45	15	58,23	-0,06	3,811	-63,52	09:45	15	56,49	0		
09:50	20	58,27	0,04	3,811	95,27	09:50	20	56,48	0,01		
09:55	25	58,29	0,02	3,811	190,55	09:55	25	56,48	0		
10:00	30	58,23	-0,06	3,811	-63,52	10:00	30	56,48	0		
10:10	40	58,10	-0,13	3,811	-29,32	10:10	40	56,48	0		
10:20	50	58,12	0,02	3,811	190,55	10:20	50	56,48	0		
10:30	60	58,21	0,09	3,811	42,34	10:30	60	56,48	0		
10:40	70	58,18	-0,03	3,811	-127,03						
10:50	80	58,23	0,05	3,811	76,22						
11:00	100	58,15	-0,08	3,811	-47,64						
11:30	120	58,06	-0,09	3,811	-42,34						
12:00	150	58,39	0,33	3,811	11,55						
12:30	180	58,37	-0,02	3,811	-190,55						
13:30	240	58,34	-0,03	3,811	-127,03						
14:30	300	58,34	0,00	3,811							
15:30	360	58,35	0,01	3,811	381,10						
16:30	420	58,41	0,06	3,811	63,52						
17:30	480	58,41	0,00	3,811							
18:30	540	58,20	-0,21	3,811	-18,15						
19:30	600	58,20	0,00	3,811							
21:30	720	58,20	0,00	3,811							
23:30	840	58,20	0,00	3,811							
01:30	960	58,20	0,00	3,811							
03:30	1080	58,20	0,00	3,811							
05:30	1200	58,20	0,00	3,811							
07:30	1320	58,20	0,00	3,811							
09:30	1440	58,20	0,00	3,811	<u> </u>		<u> </u>		ļ		

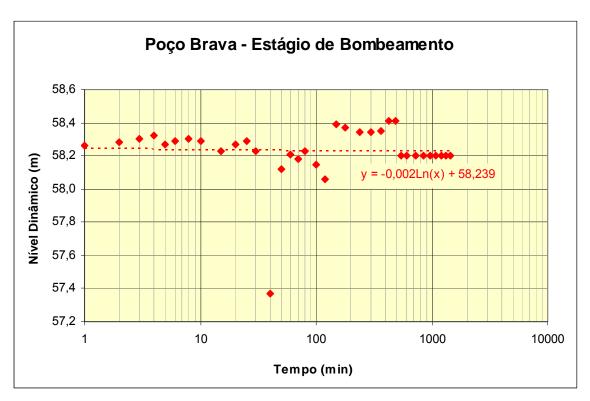


Figura 9.16 – Gráfico de rebaixamento do poço bombeado (Brava).

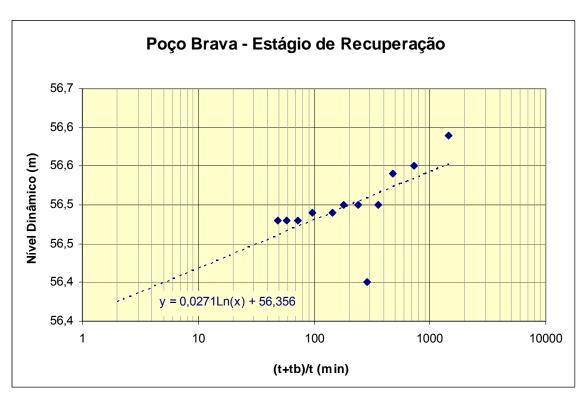


Figura 9.17 – Gráfico de recuperação do poço bombeado (Brava).

Valor da Transmissividade: T = $3,105 \times 10^{-3} \text{ m}^2/\text{s}$ **Valor da Condutividade Hidráulica:** K = $4,7 \times 10^{-5} \text{ m/s}$

9.2. Comparação com Dados Existentes

A partir dos resultados obtidos, os coeficientes hidrodinâmicos acusaram as seguintes variações nos testes realizados com poços de observação:

Coeficiente de transmissividade: Desde 9,30.10⁻⁴ até 1,19.10⁻² m²/s Coeficiente de condutividade: Desde 5,12.10⁻⁶ até 1,28.10⁻⁴ m/s Coeficiente de armazenamento: Desde 5.06.10⁻⁵ até 4.37.10⁻³

Convêm ressaltar que a região de estudos já foi alvo de inúmeros testes de bombeamento no passado, desde o ano de 1971 quando foi realizado o primeiro estudo hidrogeológico visando o abastecimento de água da cidade de Maceió, em trabalho elaborado pela Acqua-Plan/Contege para a SUDENE.

Os dados mais antigos apresentaram os resultados de valores médios para os parâmetros hidrodinâmicos no sistema aquífero Barreiras/Marituba mostrados no Quadro 9.16.

Quadro 9.16 – Coeficientes de transmissividade (T), condutividade hidráulica (K) e armazenamento (S) dos estudos mais antigos realizados na Bacia Alagoas-Sergipe.

Local e Autor do Estudo	T (m²/s)	K (m/s)	s
Bateria do Bebedouro (CONTEGE,1971)	1,9x10 ⁻²	8,8x10 ⁻⁴	1,65x10 ⁻⁴
Bateria do Reginaldo (ACQUA-PLAN,1971)	8,5x10 ⁻³		2,69x10 ⁻⁴
Bateria do Reginaldo (Costa & Santos,1974)	4,8x10 ⁻³	5,5x10 ⁻⁵	4,1x10 ⁻³

Posteriormente Cavalcanti *et al.* (1975) realizaram estudos na bateria de poços da SALGEMA no mesmo sistema aquífero Barreiras/Marituba e concluíram pelos seguintes valores médios desses parâmetros (Quadro 9.17).

Quadro 9.17 – Parâmetros hidrodinâmicos da SALGEMA.

	T (m²/s)	K (m/s)	S
Bateria da SALGEMA (Cavalcanti et al., 1975)	2,16x10 ⁻²	8,53x10 ⁻⁵	2,79x10 ⁻⁴

No aquífero Barreiras consta da bibliografia três estudos realizados com avaliação dos coeficientes de transmissividade e condutividade hidráulica (Quadro 9.18).

Quadro 9.18 – Coeficientes de transmissividade (T) e condutividade hidráulica (K) no aquífero Barreiras.

Local e Autor do Estudo	T (m ² /s)	K (m/s)
Maceió (Cavalcanti et al., 1975)	1,36x10 ⁻² a 8,8x10 ⁻⁴	2,6x10 ⁻⁴ a 8,05x10 ⁻⁶
Pólo Cloroquímico (Barroso, 1993)	1,5x10 ⁻³	6,2x10 ⁻⁵
Tabuleiro dos Martins (Ferreira <i>et al.</i> , 2002)	1,21x10 ⁻²	4,49x10 ⁻⁴

Em outros aquíferos constam resultados do coeficiente de transmissividade, sem contudo identificação do autor, como mostrado no Quadro 9.19. Também não é citado se existe cobertura do aquífero Barreiras contribuindo para o poço.

Quadro 9.19 – Valores médios de transmissividade nos aquíferos Maceió, Poção e Coqueiro Seco.

Aquífero	Localidade (município)	Coeficiente de transmissividade (m²/s)
Maceió (6 testes)	Maceió, Paripueira e Barra de Santo Antonio	1,435x10 ⁻³
Poção (6 testes)	Santa Luzia do Norte	1,159x10 ⁻⁴
Coqueiro Seco	São Miguel dos Campos	6,768x10 ⁻⁵

Finalmente deve ser citado o mais recente estudo constante na tese de doutorado de Rocha (2005), onde foram calculados 325 valores de coeficiente de transmissividade e 268 valores de coeficiente de condutividade hidráulica cujos valores médios são mostrados no Quadro 9.20 e que lhe permitiu elaborar um mapa de transmissividade dos aquíferos da área (Figura 9.18).

Quadro 9.20 – Parâmetros hidrodinâmicos do sistema aquífero Barreiras/Marituba avaliados no município de Maceió (Rocha, 2005).

Sistemas aqüíferos	T (m ² /s) *	K (m/s) **	S
Maceió	2,757 x 10 ⁻⁴	5,062 x 10 ⁻⁶	
Marituba	2,089 x 10 ⁻³	4,002 x 10 ⁻⁵	
Barreiras	4,741 x 10 ⁻²	1,371 x 10 ⁻⁴	2,9 x 10 ⁻⁴
Barreiras/Marituba	6,152 x 10 ⁻³	1,487 x 10 ⁻⁴	1,3 x 10 ⁻⁴
Sedimentos de praia e aluvião	4,060 x 10 ⁻⁴	1,207 x 10 ⁻⁵	

^{*} Em 325 testes ** Em 268 testes

Pelo acima exposto, constata-se que os valores encontrados nos testes de aquífero realizados no presente estudo, apesar das falhas e restrições descritas, enquadram-se perfeitamente nos limites dos testes anteriormente executados.

9.3. Distribuição Espacial das Transmissividades

Dos estudos realizados por Rocha (2005), resultou na elaboração de um mapa de isotransmissividades, que é apresentado na Figura 9.18 a seguir:

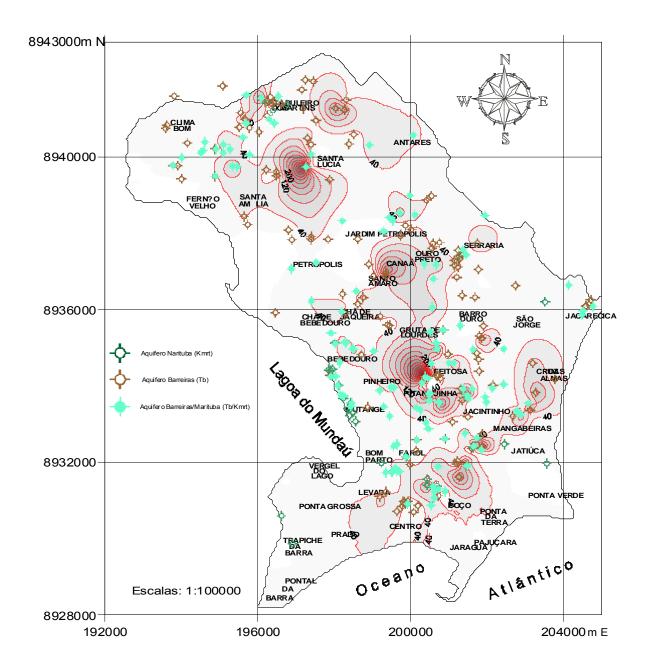


Figura 9.18 – Mapa de isotransmissividade na região central de Maceió.

O mapa da Figura 9.18 revela três zonas de maior transmissividade a saber:

- a) Santa Lucia-Tabuleiro dos Martins-Antares Coeficiente de transmissividade varia entre 4.10⁻³ e 4.10⁻² m²/s
- b) Pitanguinha-Feitosa-Canaã Coeficiente de transmissividade varia entre 4.10⁻³ e 4.10⁻² m²/s
- c) Poço-Mangabeira-Cruz das Almas Coeficiente de transmissividade varia entre 4.10⁻³ e 2.10⁻² m²/s

A maior transmissividade nas duas primeiras zonas acima descritas com relação à terceira zona pode ser justificada pela maior espessura do conjunto das formações Barreiras e Marituba naquelas áreas.

Apesar da elevada transmissividade acusada nas duas últimas zonas em relação ao restante da área não será recomendada a continuidade da explotação nas citadas zonas, como será visto adiante, quer pelos acentuados rebaixamentos que provocaram a intensa explotação das baterias de poços da CASAL naquela região, como pelo risco de intrusão salina.

9.4. Conclusões

O estudo hidrodinâmico realizado veio a corroborar a boa condição de explotação do sistema aquífero Barreiras/Marituba na região, onde os valores dos coeficientes hidrodinâmicos se mostraram relativamente elevados com relação àqueles das demais formações aquíferas.

Já se conhecia de alguns poucos testes realizados nos outros aquíferos, que as condições de sua explotação eram precárias, daí os poços estarem captando praticamente o aquífero Barreiras, o qual ocorre na forma de uma cobertura generalizada em toda a região.

A razão de se concentrar os testes de aquífero no sistema aquífero Barreiras/Marituba foi a necessidade de se obter mais dados do coeficiente de armazenamento que era o parâmetro menos conhecido e ser esse sistema o mais importante para o abastecimento d'água da região em estudo.

10. POTENCIOMETRIA

Foram elaborados os mapas potenciométricos das décadas 70, 80, 90, 2000 e a situação atual, em que foram realizadas duas campanhas de medição de nível estático em poços devidamente nivelados, com resultados praticamente idênticos entre as duas etapas em função do breve intervalo de tempo usado.

A dificuldade em se efetuar esses mapas foi o da inexistência de dados originais dos níveis estáticos de poços, isto é, de dados da ficha de perfuração do poço. Além dessa deficiência de informação duas outras lacunas existiam nos poços cadastrados, uma das quais era possível sanar: a primeira era a ausência de informação sobre a data de perfuração e a outra dizia respeito a falta da cota da boca do poço. Com relação a esta última a situação pôde ser resolvida através do Google, onde se conseguia com relativa confiabilidade e precisão determinar o ponto a partir das suas coordenadas. Finalmente, ainda porque o fato de que muitos poços que não foram cadastrados em campo, não possuírem as coordenadas de locação.

Dessa maneira, dos cerca de 2.200 poços cadastrados, 24% não dispunham de dados de coordenadas e/ou profundidade do nível estático, enquanto 37% não dispunham de data de perfuração.

Assim, o número de poços utilizados por cada década ficou em:

Década 1970 - 51 poços

Década 1980 - 210 poços

Década 1990 - 450 poços

Década 2000 - 320 poços

Atual – 200 poços nivelados e medidos

10.1. Análise da Evolução da Potenciometria com o Tempo

10.1.1. Potenciometria da Década 70

O mapa potenciométrico em anexo, com curvas de 5 em 5 metros, revela um fluxo contínuo em quase toda a área com sentido noroeste-sudeste, ou seja, do continente para o oceano, como seria o normal esperado.

Na região urbana da cidade de Maceió, onde a captação de água subterrânea era mais intensa as curvas potenciométricas já se apresentam com uma variação para a direção NW-SE mostrando fluxos no sentido de nordeste para noroeste, em direção da Lagoa do Mundaú.

Embora já se tivesse uma exploração inicial por parte da CASAL nas baterias de poços do Bebedouro, Reginaldo e Feiosa, ainda não havia sido detectadas cotas negativas nessas áreas, todavia, na região costeira já começaram aparecer cotas negativas como mostrado no mapa da Figura 10.1 (também apresentada em A0 em anexo).

Deve aqui ser ressaltado que se trabalhou apenas com dados secundários e eventuais erros que venham a ser assinalados devem-se tão somente a medições ou anotações imprecisas contidas nas fichas dos poços utilizadas.

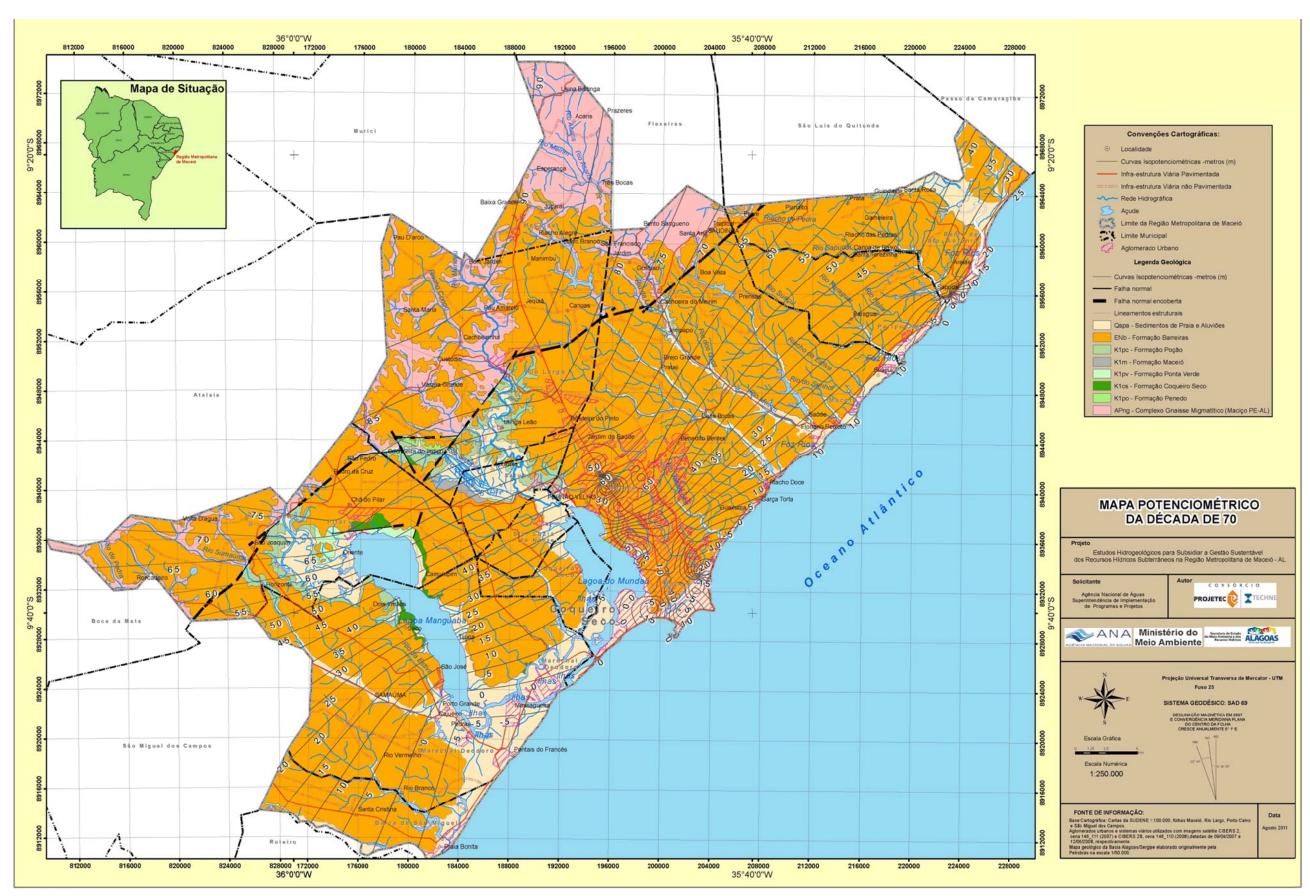


Figura 10.1 – Mapa potenciométrico da RMM na década 70.

10.1.2. Potenciometria da Década 80

O mapa potenciométrico da Figura 10.2 (também apresentada em A0 em anexo), com curvas de 5 em 5 metros, revela um fluxo regional com sentido noroeste-sudeste ou seja, do continente para o oceano, todavia os fluxos direcionados para a drenagem e corpos d'água superficiais já se fazem refletir com maior intensidade.

Com efeito, além das lagoas do Mundaú e Manguaba a própria drenagem superficial que alimenta a Lagoa do Mundaú está recebendo forte contribuição dos exutórios subterrâneos como mostram as curvas potenciométricas no município de Satuba.

O alto estrutural localizado entre as duas lagoas, onde se situam os municípios de Santa Luzia do Norte e Coqueiro Seco se comporta como um divisor de águas subterrâneas, com parte escoando no sentido da Lagoa do Mundaú e parte no sentido da Lagoa de Manguaba.

O mesmo divisor ocorre no alto do Messias com parte da drenagem subterrânea se dirigindo para o Rio Mundaú e parte para o Rio Meirim.

Um detalhe interessante, que já havia sido detectado em campo, é que o aquífero não restitui para a drenagem superficial na área onde a Formação Barreiras se encontra sobreposta a Formação Marituba; isso devido à elevada permeabilidade desta última formação o que faz com que o conjunto das duas constitua um sistema aquífero denominado de Barreiras-Marituba.

Na área urbana de Maceió onde a explotação da água subterrânea já é intensa, sobretudo com os cerca de 250 poços da CASAL pode-se constatar vários locais com drenagem radial centrípeta e cotas potenciométricas negativas, como pode ser visto nas áreas de Tabuleiro dos Martins, Gruta de Lourdes, Bebedouro-Mustange, além das áreas já deprimidas na década anterior, da zona costeira.

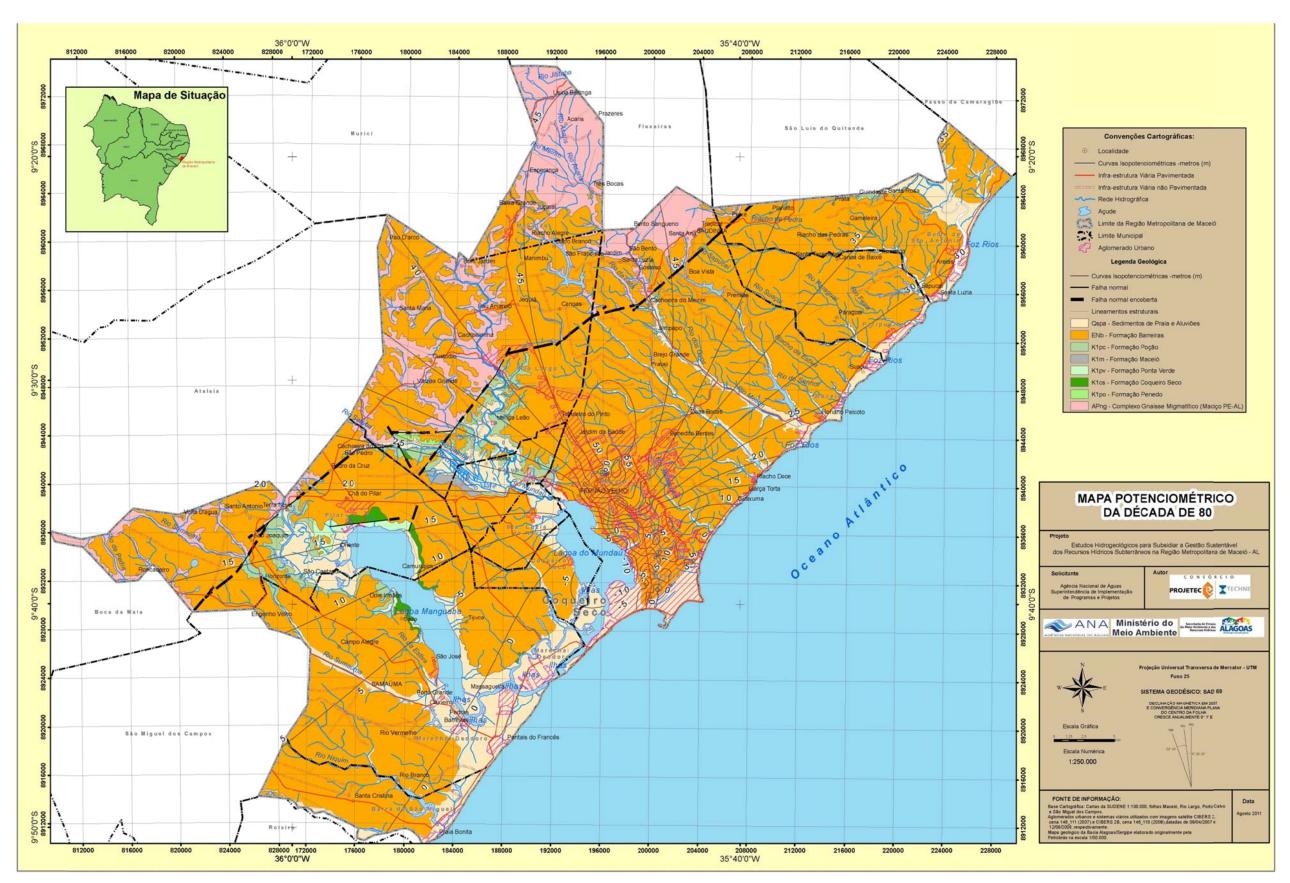


Figura 10.2 – Mapa potenciométrico da RMM na década de 80.

10.1.3 Potenciometria da Década 90

A configuração geral das curvas potenciométricas fora da região urbana de Maceió é semelhante àquela da década anterior, porém os gradientes hidráulicos são bem mais acentuados como pode ser visto, sobretudo nos municípios que ladeiam a Lagoa do Mundaú ao sul, ou seja, Santa Luzia do Norte e Coqueiro Seco, onde as cotas potenciométricas variam desde 85 m até 10 m na borda da lagoa. A figura 10.3 (também apresentada em A0 em anexo) ilustra a situação.

Também ocorre forte gradiente de escoamento subterrâneo na área mais a oeste, no município de Satuba aonde as cotas potenciométricas vão desde 105 m no Tabuleiro do Pinto até 5 m na localidade de Apolônia, no vale do rio Satuba.

Quanto a área urbana de Maceió a explotação atingiu o clímax com cotas negativas em grande área, desde Barro Duro, Cruz das Almas, Jacintinho, Farol, Pitanguinha, Centro, Bebedouro e Mustange.

Nas áreas de Barro Duro, Cruz das Almas, Farol e Bebedouro as cotas negativas chegam a 40 m abaixo do nível do mar.

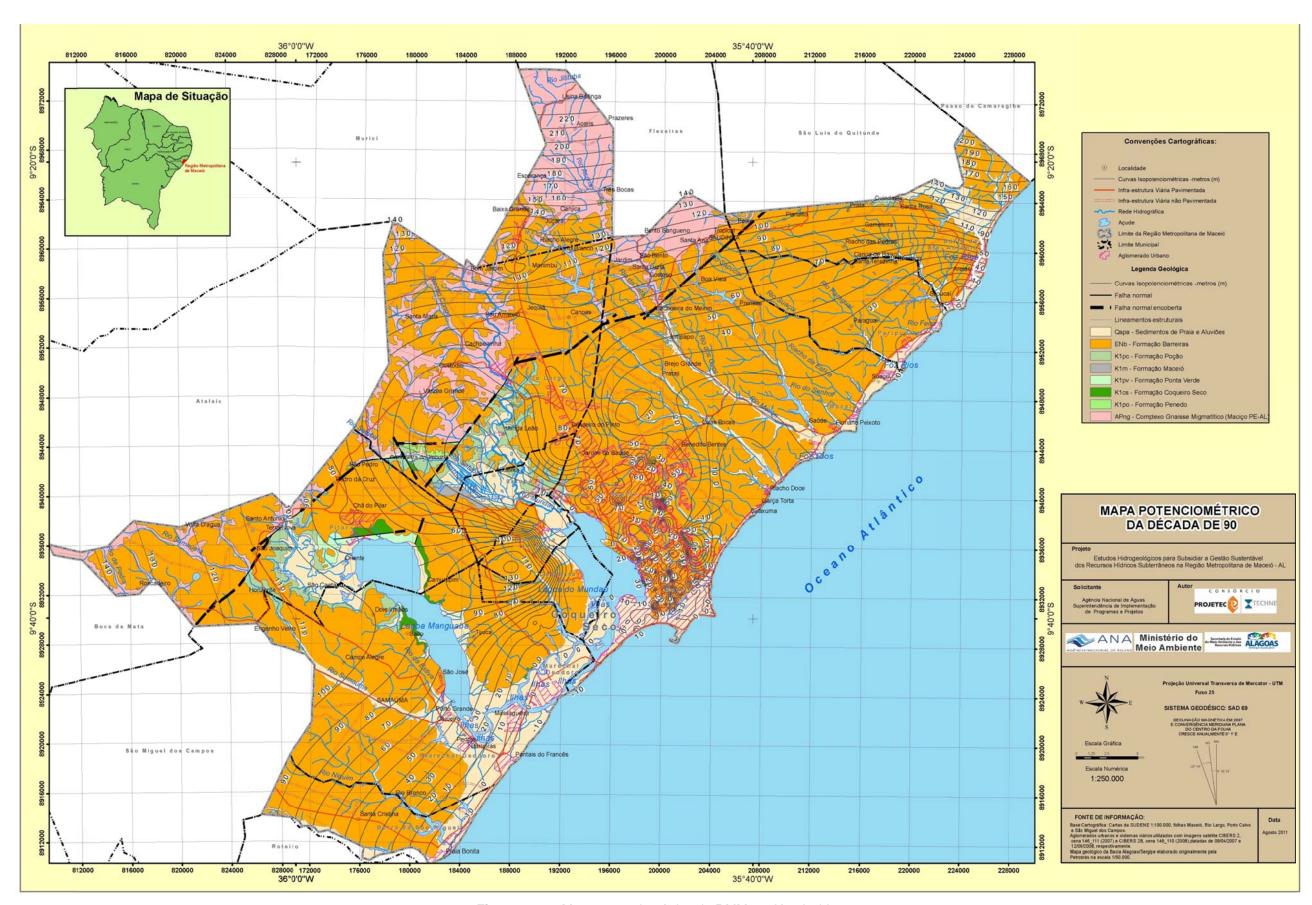


Figura 10.3 – Mapa potenciométrico da RMM na década 90.

10.1.4. Potenciometria da Década 2000

Fora da região urbana de Maceió a situação é semelhante à da década anterior, apenas com o surgimento de dois focos de intensa explotação localizados o primeiro na região norte no município de Paripueira e outro ao sul, no município de Marechal Deodoro, figura 10.4.

Já se constata uma recuperação intensa do nível da superfície potenciométrica com relação à década anterior, uma vez que as cotas negativas estão restritas às áreas mais próximas da costa ou da lagoa do Mundaú.

Esse fato se deveu à desativação de vários poços da CASAL que salinizaram devido à intensa explotação durante duas décadas consecutivas.

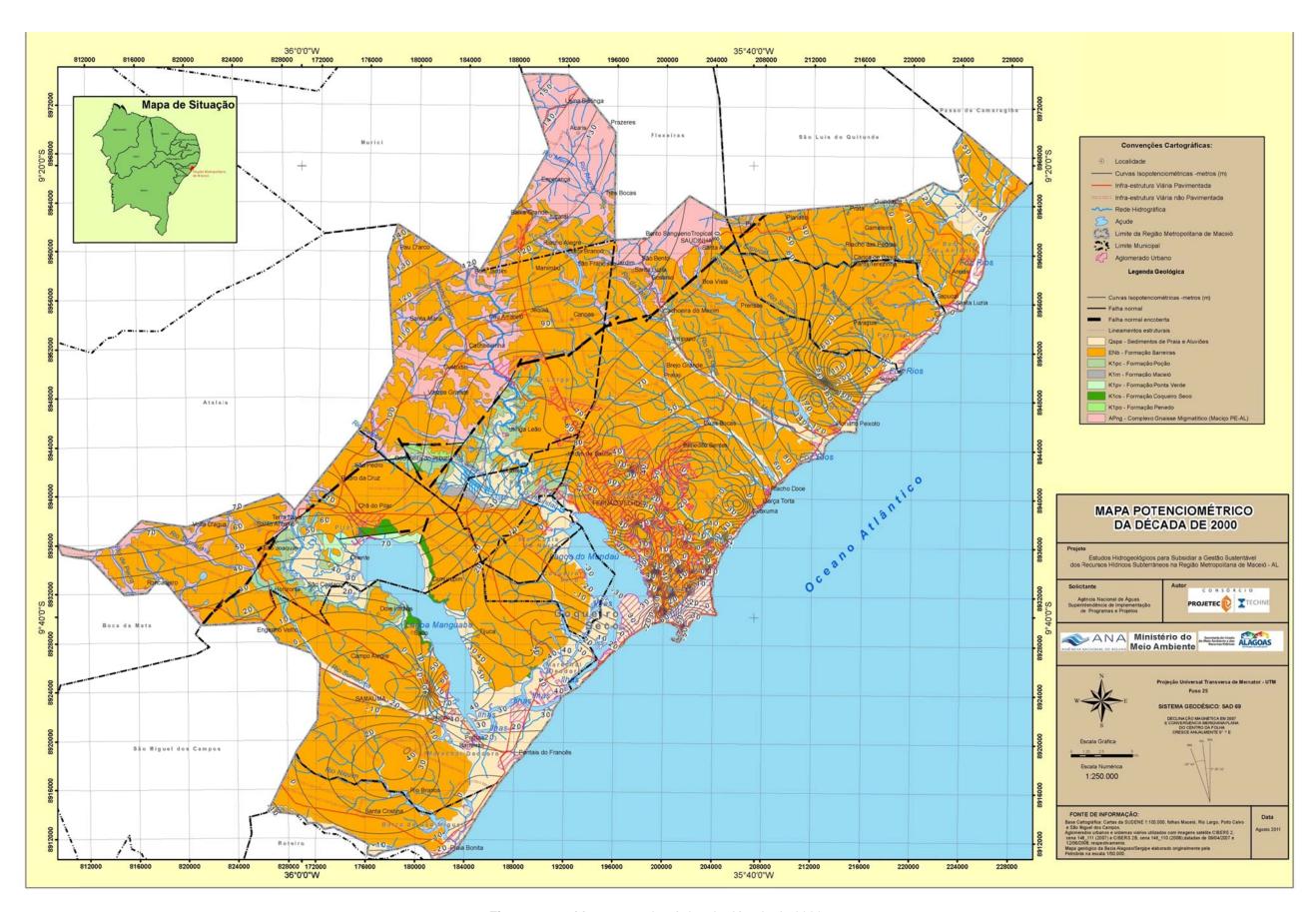


Figura 10.4 – Mapa potenciométrico da década de 2000.

10.1.5. Potenciometria Atual (2010 em Duas Etapas)

Para a confecção do mapa potenciométrico na situação atual (setembro/2009 a fevereiro/2010) foram utilizados apenas 200 poços localizados na maioria no município de Maceió e assim distribuídos:

Maceió – 156 poços; Barra de Santo Antonio – 4 poços; Paripueira – 7 poços; Messias – 4 poços; Rio Largo – 5 poços; Satuba – 3 poços; Santa Luzia do Norte – 5 poços; Coqueiro Seco – 1 poço; Pilar – 5 poços; Marechal Deodoro – 8 poços; Barra de São Miguel – 4 poços.

Os mapas elaborados com curvas de 10 em 10 metros — Figuras 10.5 e 10.6 - mostram na porção externa de Maceió a mesma configuração dos mapas anteriores e na área urbana de Maceió revela uma grande recuperação de níveis da superfície potenciométrica, aparecendo cotas negativas tão somente na área do Pontal da Barra.

Do mapa potenciométrico pode-se tirar as seguintes conclusões preliminares:

- a) o fluxo geral da água subterrânea se verifica de oeste para leste e, localmente, na zona mais densamente povoada de Maceió, de norte para sul no sentido da Lagoa do Mundaú;
- b) As curvas potenciométricas que ocorrem entre Rio Largo de Coqueiro Seco, passando por Satuba e Santa Luzia do Norte revelam claramente o controle da hidrografia superficial, ou seja, uma drenagem superficial efluente devido à restituição do aquífero livre;
- c) Decorrente de superexplotação localizada em diversos pontos da cidade de Maceió, ocorrem vários locais com drenagem centrípeta do sistema aquífero;
- d) Os valores das cotas potenciométricas variam desde o máximo de 120 m na cidade de Messias ao mínimo de 10 m, ao longo da faixa costeira;
- e) Os gradientes hidráulicos nas regiões menos explotadas, como entre os municípios de Satuba, Santa Luzia do Norte, Coqueiro Seco, Pilar e Marechal Deodoro ficam em torno de 0,5%; segundo o eixo da drenagem norte-sul entre Messias e Satuba, o gradiente chega próximo a 1% e nas zonas mais explotadas de Maceió chega a 6%.

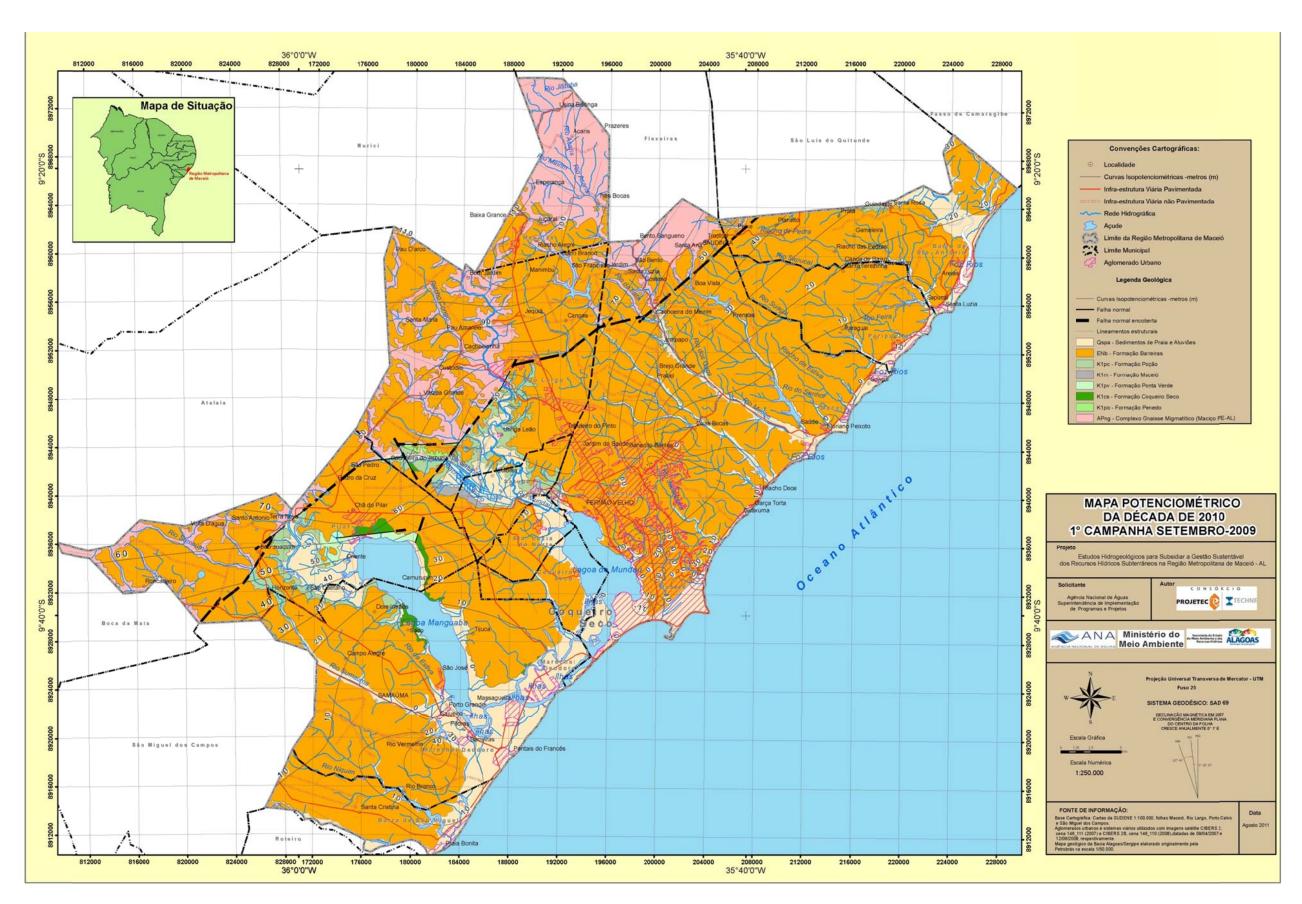


Figura 10.5 – Mapa potenciométrico da década de 2010 – 1ª Campanha – Setembro/2009.

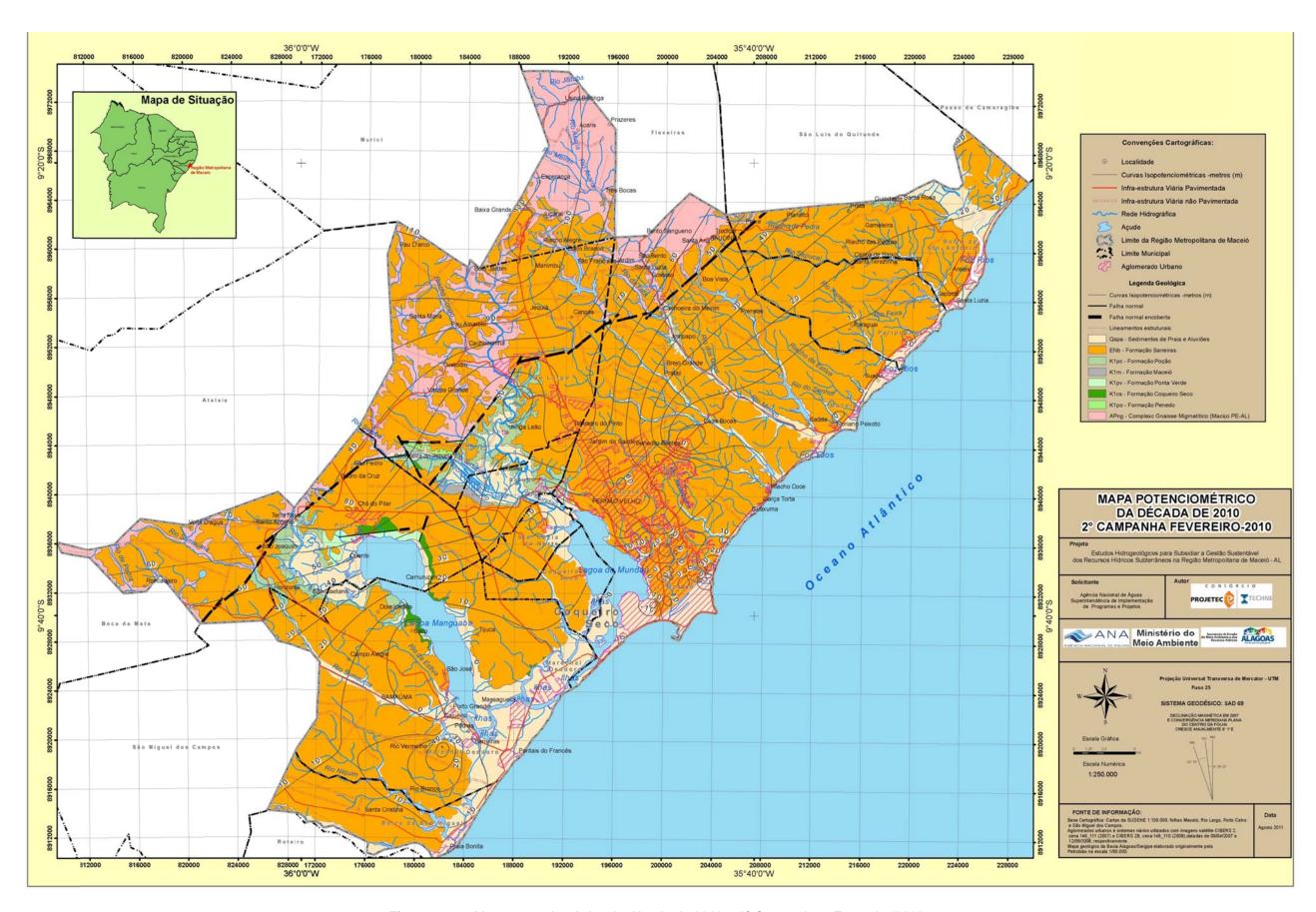


Figura 10.6 – Mapa potenciométrico da década de 2010 – 2ª Campanha – Fevereiro/2010.

Quadro 10.1 – Medição de níveis estáticos com cotas potenciométricas.

N⁰no	Nº Cad.		D. J		A	Coordenad	as UTM	0.4	Profundid	ade N.E.	Cota do	N.E.
Мара	CASAL	Local	Bairro	Município	Aquífero	Х	Υ	Cota	set./09	fev./10	set/09	fev/10
14	PBD-03	Alba Mendes	Barro Duro	Maceió		201.571	8.935.640	71,834	62,880	62,920	8,954	8,914
27	PJ-05	Aldeia do Indio	Jacintinho	Maceió	Bareiras/Marituba	202.676	8.933.209	56,230	55,980	56,010	0,250	0,220
1584	PA-03	Antares 01	Antares	Maceió	Barreiras	199.459	8.940.303	91,835	46,750	46,730	45,085	45,105
1592	PA-02	Antares 03	Antares	Maceió	Barreiras	198.927	8.940.298	94,967	47,240	47,280	47,727	47,687
120	PFE-03	Avenida Penedo	Feitosa	Maceió	Barreiras/Marituba	200.752	8.933.569	57,402	54,480	54,550	2,922	2,852
134	BDU-02	Barro Duro	Barro Duro	Maceió	Barreiras/Marituba	201.513	8.935.869	67,200	60,130	60,120	7,070	7,080
398	BEB-09	Bebedouro	Bebedouro	Maceió	Barreiras/Marituba	198.493	8.934.954	12,600	12,900	12,930	-0,300	-0,330
224	BEB-11	Bebedouro	Bebedouro	Maceió	Barreiras/Marituba	198.206	8.934.662	12,100	13,050	13,080	-0,950	-0,980
234	BEB-03B	Bebedouro	Bebedouro	Maceió	Barreiras/Marituba	198;027	8.935.141	7,629	7,850	8,010	-0,221	-0,381
397	BEB-08	Bebedouro	Bebedouro	Maceió	Barreiras/Marituba	198.506	8.935.022	11,400	15,860	15,880	-4,460	-4,480
337	BBM-01	Benício Mendes	Benedito Bentes	Maceió	Barreiras	201.890	8.942.717	90,500	51,720	51,000	38,780	39,500
192	PBL-2	Bolão	Bom Parto	Maceió	Barreiras/Marituba	199.360	8.931.738	15,700	8,620	8,650	7,080	7,050
197	PBL-5a	Bolão	Bom Parto	Maceió	Barreiras/Marituba	199.517	8.931.753	18,600	10,970	11,030	7,630	7,570
200	PBL-6	Bolão	Bom Parto	Maceió	Barreiras/Marituba	199.643	8.932.481	54,000	47,650	47,640	6,350	6,360
201	PBL-7	Bolão	Bom Parto	Maceió	Barreiras/Marituba	199.501	8.932.418	53,500	52,760	53,030	0,740	0,470
417	PCL-1	Cely Loureiro	Benedito Bentes	Maceió		200.787	8.944.035	54,300	52,650	52,690	1,650	1,610
164	PCJ-01	Chã da Jaqueira	C. da Jaqueira	Maceió	Barreiras/Marituba	198.629	8.936.136	51,300	41,970	42,040	9,330	9,260
162	PCJ-04	Chã da Jaqueira	C. da Jaqueira	Maceió	Barreiras/Marituba	198.192	8.935.946	54,700	48,130	48,160	6,570	6,540
406	PCJ-02	Chã da Jaqueira - Praça	C. da Jaqueira	Maceió	Barreiras/Marituba	198.223	8.936.403	59,607	41,550	41,670	18,057	17,937
163	PCJ-03	Chã da Jaqueira 04	C. da Jaqueira	Maceió	Barreiras/Marituba	198.286	8.935.895	53,172	44,120	44,160	9,052	9,012
295	PCU-01	Cidade Universitária	Cidade Universitária	Maceió	Barreiras/Marituba	194.757	8.942.783	85,000	37,870	37,900	47,130	47,100
352	HVA-01	CJ. Hélio Vasconcelos	Santos Dumont	Maceió	Barreiras	192.688	8.944.747	106,000	45,430	45,410	60,570	60,590
372	PNSA-01	Cj. Nossa Senhora Aparecida	T.dos Martins	Maceió		197.419	8.940.877	88,100	37,380	37,390	50,720	50,710
176	PCB-06	Clima Bom II	Clima Bom	Maceió	Barreiras	193.676	8.940.738	101,318	54,260	54,310	47,058	47,008
175	PCB-05	Clima Bom II	Clima Bom	Maceió	Barreiras	193.634	8.940.816	101,000	56,220	56,210	44,780	44,790
177	PCB-01A	Clima-Bom	Clima Bom	Maceió	Barreiras	194.625	8.940.375	95,688	47,360	47,380	48,328	48,308
478	PCB-02	Colina dos Eucalíptos	Santa Amélia	Maceió	Barreiras	195.456	8.938.802	99,538	59,250	59,340	40,288	40,198
486		COMURB	Bom Parto	Maceió		199.360	8.931.231	28,545	60,440	60,500	-31,895	-31,955
503	PCC-03	Condomínio Carajás	Serraria	Maceió	Barreiras	200.761	8.937.747	74,070	47,330	47,350	26,740	26,720
629	PAGM-3a	Conj. Alfredo G. de Mendonça 02	Jacarecica	Maceió	Barreiras	204.671	8.936.184	27,360	17,760	17,820	9,600	9,540
323	PBBE-01	Conj. Benedito Bentes I	T.dos Martins	Maceió	Barreiras/Marituba	202.009	8.943.905	41,460	47,960	48,120	-6,500	-6,660
317	PBBE-09	Conj. Benedito Bentes IX	T.dos Martins	Maceió	Barreiras/Marituba	200.317	8.943.063	95,100	49,360	49,410	45,740	45,690
333	PBBE-05A	Conj. Benedito Bentes VA	T.dos Martins	Maceió	Barreiras/Marituba	199 349	8 942 805	94,230	43,960	44,050	50,270	50,180
313	PBBE-08	Conj. Benedito Bentes VIII	T.dos Martins	Maceió	Barreiras/Marituba	199.250	8.942.740	81,000	53,820	53,800	27,180	27,200
314	PBBE-10	Conj. Benedito Bentes X	T.dos Martins	Maceió	Barreiras/Marituba	200.404	8.942.377	94,000	50,560	50,620	43,440	43,380
318	PBBE-11	Conj. Benedito Bentes XI	T.dos Martins	Maceió	Barreiras/Marituba	199.522	8.942.167	91,700	47,930	48,010	43,770	43,690

N⁰no	Nº Cad.	1 1	D.:	M	A	Coordenac	las UTM	0.4.	Profundid	ade N.E.	Cota do	N.E.
Мара	CASAL	Local	Bairro	Município	Aquífero	Х	Υ	Cota	set./09	fev./10	set/09	fev/10
329	PBBE-12	Conj. Benedito Bentes XII	T.dos Martins	Maceió	Barreiras	199.627	8.942.037	93,100	52,120	52,160	40,980	40,940
316	PBBE-13A	Conj. Benedito Bentes XIIIA	T.dos Martins	Maceió	Barreiras	199 495	8 942 705	92,356	43,660	43,710	48,696	48,646
345	PEGM-1A	Conj. Eustáquio Gomes de Melo	T.dos Martins	Maceió	Barreiras	193.607	8.944.203	103,000	47,280	47,290	55,720	55,710
676	PMP-02	Conj. Margarida Procópio	Serraria	Maceió	Barreiras	191.493	8.944.256	114,000	47,560	47,580	66,440	66,420
678	PMM-01	Conj. Mario Mafra	Serraria	Maceió	Barreiras	192.169	8.944.954	111,000	43,280	43,320	67,720	67,680
679	PMM-02	Conj. Mário Mafra	Serraria	Maceió	Barreiras	192.182	8.945.061	112,000	45,340	45,300	66,660	66,700
680	PMM-03	Conj. Mário Mafra	Serraria	Maceió	Barreiras	192.168	8.945.173	112,000	43,660	43,700	68,340	68,300
369	PMA-01	Conj. Moacir Andrade	Santa Amélia	Maceió	Barreiras	201.270	8.941.343	91,200	57,050	57,120	34,150	34,080
385	PSH-01	Conj. Santa Helena	Serraria	Maceió	Barreiras	196.060	8.943.818	81,000	31,560	31,620	49,440	49,380
659	PJS-2a	Conj.Jardim da Serraria	Serraria	Maceió	Barreiras	201.230	8.936.641	91,300	56,890	56,900	34,410	34,400
689	PJV-01	Conj.Resid.Jardim Vaticano	Benedito Bentes	Maceió	Barreiras	202.944	8.933.212	48,419	13,340	13,410	35,079	35,009
370	PMN-01	Conjunto Morada Nova	Santa Amélia	Maceió	Barreiras	196.343	8.938.853	91,000	38,560	38,620	52,440	52,380
724	PC-01	Creche São José	Canaã	Maceió		199.364	8.936.875	60,287	42,120	42,150	18,167	18,137
179	PCA-01	Cruz das Almas	Cruz das Almas	Maceió		203.604	8.934.088	45,585	8,230	8,300	37,355	37,285
1609	PT-03	Distrito Industrial	T.do Martins	Maceió	Bareiras/Marituba	196.312	8.940.967	87,250	20,120	20,100	67,130	67,150
1607	PT-04	Distrito Industrial	T.do Martins	Maceió	Bareiras/Marituba	195.626	8.940.818	86,823	39,680	39,740	47,143	47,083
1608	PT-06	Distrito Industrial	T.do Martins	Maceió	Bareiras/Marituba	195.702	8.940.870	86,955	44,960	45,030	41,995	41,925
749	PDAM-01	Dom Adelmo Machado	Cruz das Almas	Maceió	Barreiras	203.245	8.933.550	14,300	6,780	6,860	7,520	7,440
748	PDAM-02	Dom Adelmo Machado	Cruz das Almas	Maceió	Barreiras	203.105	8.933.617	19,245	12,320	12,350	6,925	6,895
312	PAM-02	Conjunto Antonio C.Magalhães	Feitosa	Maceió	Barreiras	200.968	8.934.606	56,658	56,280	56,330	0,378	0,328
391	JAC-04A	Escola E.F. Baltazar de Mendonça	Jacintinho	Maceió		201.425	8.932.764	55,071	55,870	55,960	-0,799	-0,889
986	CAN-03	Escola Santa Tereza D'àvila	Santo Amaro	Maceió	Barreiras	199.035	8.936.875	59,108	39,350	39,410	19,758	19,698
397	PB-06	ETA do CARDOSO	Bebedouro	Maceió	Barreiras	198.602	8.935.108	13,846	6,120	6,130	7,726	7,716
281	FAR-01	Farol 01	Farol	Maceió	Barreiras	198.583	8.934.924	43,423	53,650	53,710	-10,227	-10,287
297	FAR-03	Farol 03	Farol	Maceió	Barreiras	198.714	8.934;818	54,979	47,820	47,880	7,159	7,099
118	FEI-02	Feitosa	Feitosa	Maceió	Barreiras	205.598	8.932.794	50,600	46,140	46,180	4,460	4,420
1030	GLI-01	Gama Lins 1	Sitio S.Jorge	Maceió		195.464	8.943.912	89,231	36,580	36,600	52,651	52,631
1048	PB-04-a	Granja Conceição-Quartel de Cavalaria	Bebedouro	Maceió	Barreiras	198.423	8.935.523	33,741	11,340	11,340	22,401	22,401
1060	PHE-01	Henrique Equelman 1	Serraria	Maceió	Bareiras	199.203	8.940.902	71,182	43,260	43,310	27,922	27,872
1111	PIN-01A	Inocoop-1A	Cidade Universitária	Maceió		194.190	8.943.736	91,218	41,880	41,950	49,338	49,268
1112	PIN-2	Inocoop-2	Benedito Bentes	Maceió		194.184	8.943.686	95,383	40,120	40,150	55,263	55,233
227	PI-3	Ipioca	Ipioca	Maceió	Barreiras	213.695	8.945.686	43,494	36,550	36,630	6,944	6,864
226	PI-02a	Ipioca (CASAL)	T.dos Martins	Maceió	Barreiras	213.749	8.946.241	9,700	10,880	11,020	-1,180	-1,320
188	JAC-15	Jacintinho	Barro Duro	Maceió	Barreiras/Marituba	202.138	8.933.944	70,826	67,890	67,980	2,936	2,846
189	JAC 07	Jacintinho 07	Jacintinho	Maceió	Barreiras/Marituba	201.998	8.933.568	66,245	65,850	65,920	0,395	0,325
184	JAC-08A	Jacintinho 08A	Jacintinho	Maceió	Barreiras/Marituba	201.350	8.933.631	56,836	49,280	49,330	7,556	7,506
178	JAC-17	Jacintinho 17	Jacintinho	Maceió	Barreiras/Marituba	201 614	8 933 923	58,620	60,220	60,280	-1,600	-1,660
1138	PJE-01	Jardim Eperançca	Jatiuca	Maceió		200.640	8.934.163	52,349	51,650	51,710	0,699	0,639
1145	PCJS-02	João Sampaio	Chã da Jaqueira	Maceió	Bareiras/Marituba	196.888	8.937.064	91,287	50,480	50,550	40,807	40,737

N⁰no	Nº Cad.				İ	Coordenac	las UTM		Profundid	ade N.E.	Cota do	N.E.
Мара	CASAL	Local	Bairro	Município	Aquífero	X	Υ Υ	Cota	set./09	fev./10	set/09	fev/10
1152	PJ-12	José da Silva Peixoto	Jacintinho	Maceió		200.920	8.933.115	53,899	51,280	51,290	2,619	2,609
1153	PJ-03	José da Silva Peixoto	Jacintinho	Maceió		201.502	8.933.193	54,753	57,680	57,750	-2,927	-2,997
1154	PJDL-1A	José Dubeaux Leão	T.do Martins	Maceió	Barreiras	198.039	8.941.260	84,877	29,820	29,850	55,057	55,027
1167	PJT-04a	José Tenório	Serraria	Maceió	Barreiras	201.750	8.937.730	74,290	53,880	53,950	20,410	20,340
1162	PJT-02	José Tenório	Serraria	Maceió	Barreiras	201.212	8.937.155	75,171	62,690	62,700	12,481	12,471
1163	PJT-05	José Tenório	Serraria	Maceió	Barreiras	201.345	8.937.415	72,700	57,150	57,180	15,550	15,520
1161	PJT-03a	José Tenório	Serraria	Maceió	Barreiras	201.232	8.937.149	75,300	61,320	61,330	13,980	13,970
1164	PJTL-01	José Tenório	Serraria	Maceió	Barreiras	201.361	8.937.479	77,581	59,680	59,710	17,901	17,871
191	PBL-4a	Ladeira do Bolão	Farol	Maceió	Barreiras/Marituba	199.879	8.932.149	43,877	38,230	38,230	5,647	5,647
193	PBL-01	Ladeira do Bolão	Bom Parto	Maceió	Barreiras/Marituba	199.601	8.931.861	27,391	17,650	17,680	9,741	9,711
202	PLB-03	Ladeira do Brito	Centro	Maceió	Barreiras/Marituba	199.940	8.930.991	50,800	44,870	44,910	5,930	5,890
203	PLB-04	Ladeira do Brito	Centro	Maceió	Barreiras/Marituba	199.810	8.930.965	48,900	42,150	42,170	6,750	6,730
404	LSD-01	Lar São Domingos	Mangabeiras	Maceió	Barreiras	202.964	8.933.373	29,457	16,350	16,390	13,107	13,067
228	PNM-01	Loteamento Novo Mundo	Serraria	Maceió		200.864	8.935.458	40,000	52,900	52,970	-12,900	-12,970
747	PLT-01	Lucila Toledo 1	T.dos Martins	Maceió	Barreiras	196.136	8.943.825	87,677	31,890	31,960	55,787	55,717
225	PMA-02	Monte Alegre	T. do Martins	Maceió	Barreiras/Marituba	198.524	8.936.659	57,131	48,750	48,800	8,381	8,331
207	PMA-01	Monte Alegre	T. do Martins	Maceió	Barreiras/Marituba	198.578	8.936.483	56,100	44,820	44,870	11,280	11,230
1282	PMU-01	Murilópolis	Barro Duro	Maceió	Barreiras/Marituba	200.570	8.936.055	52,205	36,670	36,710	15,535	15,495
373	POL-01	Osman Loureiro	Clima Bom	Maceió	Barreiras	195.081	8.940.108	91,900	47,450	47,540	44,450	44,360
374	POL-02	Osman Loureiro	Clima Bom	Maceió	Barreiras	195.104	8.940.092	95,712	46,760	46,830	48,952	48,882
375	POL-03	Osman Loureiro	Clima Bom	Maceió	Barreiras	195.340	8.939.743	95,800	46,550	46,590	49,250	49,210
229	POP-01	Ouro Preto	Ouro Preto	Maceió	Barreiras/Marituba	200.360	8.937.191	61,726	34,920	34,990	26,806	26,736
230	POP-02	Ouro Preto	Ouro Preto	Maceió	Barreiras/Marituba	200.670	8.937.170	61,837	40,580	40,650	21,257	21,187
1264	PPH-01	Paraíso do Horto	Feitosa	Maceió		198.618	8.935.537	54,000	48,540	48,600	5,460	5,400
1265	CAR-03	Parque Caramuru II	Feitosa	Maceió		200.741	8.934.280	59,685	55,550	55,610	4,135	4,075
232	PPE-01	Parque José da Silva Nogueira	Prado	Maceió		198.067	8.929.898	23,320	26,380	26,450	-3,060	-3,130
1672	TAB-07A	Pç. Wellington G. da Silva	T.do Martins	Maceió	Barreiras/Marituba	195.467	8.939.730	97,994	47,330	47,390	50,664	50,604
238	PP-01	Pescaria	Pescaria	Maceió	Barreiras	212.029	8.944.517	11,902	6.98	7,040	4,922	4,862
240	PP-02	Pescaria	Pescaria	Maceió	Barreiras	211.920	8.944.499	25,800	20,550	20,640	5,250	5,160
243	PJ-09-A	Piabas	Jacintinho	Maceió	Barreiras/Marituba	201.382	8.933.934	61,307	54,880	54,930	6,427	6,377
1329	PPG-01	Pouso da Garça		Maceió	Barreiras/Marituba	198.659	8.941.421	91,200	40,380	40,420	50,820	50,780
248	PAM-01	Praça Antônio C. Magalhães	Feitosa	Maceió	Barreiras/Marituba	201.129	8.934.601	60,619	60,750	60,810	-0,131	-0,191
249	MAN-04	Praça Cipriano Jucá	Cruz das Almas	Maceió	Barreiras	201.271	8.931.620	14,479	7,560	7,610	6,919	6,869
1567	PJ-11	Praça Mário Jambo	Jacintinho	Maceió		202.066	8.933.572	67,121	59,820	59,860	7,301	7,261
264	PR-03	Reginaldo	Reginaldo	Maceió	Barreiras/Marituba	200.544	8.934.583	28,720	15,780	15,840	12,940	12,880
262	PR-01A	Reginaldo	Reginaldo	Maceió	Barreiras/Marituba	200.534	8.933.435	43,242	19,880	19,950	23,362	23,292
272	REG-04-A	Reginaldo	Reginaldo	Maceió	Barreiras/Marituba	200.703	8.934.972	36,579	20,650	20,680	15,929	15,899
266	REG-05	Reginaldo	Reginaldo	Maceió	Barreiras/Marituba	200.199	8.935.679	52,835	22,780	22,800	30,055	30,035
269	REG-02A	Reginaldo	Reginaldo	Maceió	Barreiras/Marituba	200.458	8.934.202	27,531	30,550	30,620	-3,019	-3,089
274	REG-12	Reginaldo	Farol	Maceió	Barreiras/Marituba	200.484	8.933.823	19,258	29,780	29,800	-10,522	-10,542

Quadro 10.1 - Medição de níveis estáticos com cotas potenciométricas (continuação).

N⁰no	Nº Cad.	Medição de niveis estátic	Bairro	Município	Aguífero	Coordenac	las UTM	Cota	Profundid	ade N.E.	Cota do	N.E.
Mapa	CASAL	Local	Ballio	Mullicipio	Aquileio	Х	Υ	Cola	set./09	fev./10	set/09	fev/10
275	REG-14	Reginaldo	Farol	Maceió	Barreiras/Marituba	200.230	8.933.430	39,478	52,610	52,600	-13,132	-13,122
902	FNE-01	Res. Freitas Neto BB	Ponta da Terra	Maceió		201.789	8.941.333	81,914	53,120	53,140	28,794	28,774
285	FAR-05	Reservatório 04	Farol	Maceió	Barreiras/Marituba	199.569	8.933.965	58,587	53,870	53,950	4,717	4,637
155	PBL-08	Reservatório 2A	Farol	Maceió	Barreiras/Marituba	199.647	8.932.475	50,934	45,760	45,800	5,174	5,134
281	FAR 02	Reservatório velho	Bebedouro	Maceió	Barreiras/Marituba	198.595	8.934.929	42,745	39,210	39,220	3,535	3,525
1684	PRD-01	Riacho Doce	Riacho Doce	Maceió	Barreiras	205.007	8.942.255	25,600	4,560	4,590	21,040	21,010
1682	PRD-02	Riacho Doce	Riacho Doce	Maceió	Barreiras	205.103	8.942.246	27,300	7,220	7,270	20,080	20,030
1690	PRC-02	Rosane Collor II	Clima Bom	Maceió		193.795	8.939.766	103,831	64,820	64,930	39,011	38,901
1691	PRC-01	Rosane Collor II	Clima Bom	Maceió		194.022	8.939.966	102,952	65,690	65,730	37,262	37,222
1692	PBD-01	Rua Ceará	Barro Duro	Maceió	Barreiras/Marituba	201.206	8.935.462	64,957	56,770	56,820	8,187	8,137
292	PJ-13	Rua Triunfo	Jacintinho	Maceió	Barreiras/Marituba	200.720	8.931.894	44,069	44,880	44,900	-0,811	-0,831
596	PRP-02	Rui Palmeira	Serraria	Maceió	Barreiras	200.981	8.936.645	69,584	52,680	52,700	16,904	16,884
597	POR-01A	Rui Palmeira	Serraria	Maceió	Barreiras	200.603	8.936.798	56,460	51,870	51,910	4,590	4,550
1434	SLI-02	Salvador Lira	T.do Martins	Maceió	Barreiras/Marituba	198.060	8.941.767	80,253	24,860	24,870	55,393	55,383
1435	SLI-03	Salvador Lira	T.do Martins	Maceió	Barreiras/Marituba	198.419	8.941.716	86,621	33,780	33,810	52,841	52,811
1697	SAM-02	Samambaia	Serraria	Maceió	Barreiras/Marituba	201.792	8.936.492	59,632	56,680	56,710	2,952	2,922
1696	OS-02	Samambaia	Serraria	Maceió	Barreiras/Marituba	201.524	8.936.696	65,851	58,730	58,750	7,121	7,101
1707	PSL-01a	Santa lucia	Santa Lúcia	Maceió	Barreiras	197.400	8.940.310	95,097	42,550	42,620	52,547	52,477
294	PSL-02	Santa lucia	Santa Lúcia	Maceió	Barreiras	197.362	8.940.121	99,600	45,560	45,590	54,040	54,010
209	PSL-03	Santa lucia	Santa Lúcia	Maceió	Barreiras	197.775	8.939.447	101,800	44,030	44,050	57,770	57,750
210	PSL-04	Santa lucia	Santa Lúcia	Maceió	Barreiras	197.427	8.940.582	100,250	45,220	45,590	55,030	54,660
1704	PSL-05	Santa lucia	Santa Lúcia	Maceió	Barreiras	197.858	8.940.898	84,284	33,560	33,600	50,724	50,684
394	PSL-01	Santo Amaro	Santo Amaro	Maceió	Barreiras	199.037	8.936.713	60,253	44,450	44,440	15,803	15,813
1662	PSB-01	Selma Bandeira	Benedito Bentes	Maceió	Barreiras	201.421	8.940.493	87,616	55,590	55,610	32,026	32,006
300	PSSJ-03	Sítio São Jorge	Barro Duro	Maceió	Barreiras/Marituba	201.690	8.935.190	65,700	59,780	59,840	5,920	5,860
301	PSSJ-04	Sítio São Jorge	Barro Duro	Maceió	Barreiras/Marituba	201.896	8.935.566	65,000	59,670	59,700	5,330	5,300
302	SMA-01	Stella Maris	Jatiúca	Maceió	Barreiras	202.455	8.932.474	13,624	10,220	10,230	3,404	3,394
529	PVP-01	Valparaiso	Feitosa	Maceió	Barreiras/Marituba	201.014	8.934.319	54,222	53,890	53,940	0,332	0,282
1734	VAT-02	Vaticano	Cruz das Almas	Maceió	Barreiras	203.178	8.933.243	17,793	13,120	13,130	4,673	4,663
310	PVE-01	Vila da EMATER	Jacarecica	Maceió	Barreiras/Marituba	203.108	8.933.620	19,068	31,450	31,460	-12,382	-12,392
1133		Zoonose 1	Bairro Novo	Maceió		193.663	8.945.182	115,347	44,880	44,890	70,467	70,457
1008		CCBS (FEJAL)	Farol	Maceió	Barreiras	199.647	8.931.463	52,345	46,100	46,120	6,245	6,225
1009		Prédio de Direito (FEJAL)	Farol	Maceió	Barreiras	199.850	8.931.777	53,358	45,050	45,080	8,308	8,278
1374		Residencial Vivenda da Espanha	Feitosa	Maceió	Barreiras	200.828	8.934.155	62,347	58,570	58,600	3,777	3,747
1382		Ricardo Nhoncase	Farol	Maceió	Barreiras	200.361	8.931.646	58,469	43,480	43,510	14,989	14,959
339		Conjunto Residencial Caramuru	Feitosa	Maceió	Barreiras	200.786	8.935.487	64,587	50,120	50,150	14,467	14,437
465		Colégio Cristo Rei	Farol	Maceió	Barreiras	199.565	8.932.500	62,976	49,680	49,700	13,296	13,276
1753		Fazenda Santo Expedito		Barra de Sto Antônio		221.518	8.956.581	13,157	13,000	13,050	0,157	0,107
1756		Granja Esperança		Barra de Sto Antônio		223.391	8.957.105	42,857	27,860	27,900	14,997	14,957

Quadro 10.1 – Medição de níveis estáticos com cotas potenciométricas (continuação).

N⁰no	Nº Cad.	Local	Bairro	Município	Aguífero	Coordena	das UTM	Cota	Profundio	lade N.E.	Cota do	N.E.
Мара	CASAL	Local	Бапто	Widilicipio	Aquileio	Х	Υ	Cola	set./09	fev./10	set/09	fev/10
1760		Sitio de Idalécio Alves		Barra de Sto Antônio		223.832	8.957.001	38,459	32,560	32,600	5,899	5,859
1750		Condomínio Bosque Rio Mar		Barra de Sto Antônio		224.097	8.957.631	15,278	3,250	3,270	12,028	12,008
1792		Cidade Universitária			Barreiras	172.040	8.910.657	6,000	5,220	5,230	0,780	0,770
1807		Povoado São Sebastião		Barra de São Miguel	Barreiras	179.023	8.913.294	75,695	70,350	70,400	5,345	5,295
1813		Sitio Santa Rosa			Barreiras	179 939	8 911 794	48,325	41,650	41,690	6,675	6,635
1996		Caixa D'água		Paripueira	Barreiras	220.158	8.953.086	14,972	5,380	5,400	9,592	9,572
2012		Loteamento Atlantico Norte		Paripueira	Barreiras	219.084	8.951.318	16,231	17,350	17,360	-1,119	-1,129
1997		Canavalis		Paripueira	Barreiras	212.783	8.949.588	12,328	10,580	10,600	1,748	1,728
1998		INVESTINOR 2		Paripueira	Barreiras	213.183	8.949.707	14,500	9,240	9,240	5,260	5,260
1999		Lago Azul		Paripueira	Barreiras	212.818	8.949.459	19,000	11,780	11,800	7,220	7,200
2000		Sitio Santa Maria		Paripueira	Barreiras	214.618	8.949.626	13,500	10,660	10,670	2,840	2,830
2020		Paripueira		Paripueira	Barreiras	219.936	8.952.942	17,121	3,260	3,290	13,861	13,831
1978		Fazenda Esperança		Messias	Barreiras	189.598	8.965.470	115,984	5,550	5,570	110,434	110,414
1984		Rodoviária São Geraldo - BR 104 Norte		Messias	Barreiras	188.086	8.959.325	143,820	36,580	36,600	107,240	107,220
1983		Posto Pichilau		Messias	Barreiras	188.143	8.958.653	147,739	28,870	28,900	118,869	118,839
1988		Vizinho à CHESF		Messias	Barreiras	188.086	8.959.319	143,711	21,480	21,510	122,231	122,201
2106		Brasil Novo		Rio Largo	Barreiras	191.507	8.944.384	113,817	50,380	50,400	63,437	63,417
2154		CHESF		Rio Largo	Barreiras	188.588	8.948.034	67,616	25,850	25,880	41,766	41,736
2117		Chica Boa (Antiga Fábrica)		Rio Largo	Barreiras	191.287	8.948.474	125,177	54,790	54,810	70,387	70,367
2134		Loteamento Campo dos Palmares		Rio Largo	Barreiras	192.784	8.945.536	114,625	38,790	38,840	75,835	75,785
2088		Aeroporto Zumbi dos Palmares		Rio Largo	Barreiras/Poção	193.261	8.946.796	117,962	41,470	41,490	76,492	76,472
2293		Fazenda Primavera		Satuba		184.514	8.938.772	110,737	58,460	58,480	52,277	52,257
2295		Central de Usinagem		Satuba		192.683	8.940.698	85,268	38,580	38,610	46,688	46,658
2297		Lyndoia Clube		Satuba		185.766	8.938.064	88,456	43,550	43,560	44,906	44,896
2163		Loteamento Benedito Mascarenhas		Sta Luzia do Norte		190.242	8.938.102	11,701	8,880	8,910	2,821	2,791
2181		Povoado Mutirão		Sta Luzia do Norte	Barreiras/Maceió	188.959	8.937.726	80,493	69,480	69,520	11,013	10,973
2180		Posto de Saúde Quilombo - Quilombo		Sta Luzia do Norte	Barreiras	190.646	8.936.326	18,752	6,800	6,820	11,952	11,932
2161		Alexandre A. Ferreira		Sta Luzia do Norte		190.888	8.933.838	20,359	5,250	5,260	15,109	15,099
2164		Carlos Alberto		Sta Luzia do Norte		193.591	8.937.096	19,378	3,560	3,570	15,818	15,808
1829		Nova Brasilia		Coqueiro Seco		192.030	8.933.010	95,107	78,250	78,260	16,857	16,847
1137		Escola Presidente Medici		Pilar	Barreiras/Poção	174.164	8.940.920	132,028	53,380	53,410	78,648	78,618
1136		CHESF Pilar		Pilar		174.079	8.938.036	125,011	52,590	52.60	72,421	77,411
1140		Loteamento Frei Damião		Pilar	Barreiras/Poção	174.710	8.938.656	125,350	44,870	44,890	80,480	80,460
2077		Sitio Bela Vista		Pilar	Barreiras/Poção	174.909	8.937.556	122,689	53,480	53,500	69,209	69,189
2078		Sitio Recanto Feliz		Pilar		175.157	8.939.330	124,369	49,580	49,620	74,789	74,749
1163		ALCLOR-Polo		Marechal Deodoro		189.812	8.929.801	89,366	76,790	76,810	12,576	12,556
1174		C. José Dias		Marechal Deodoro	Barreiras	181.221	8.924.124	34,222	38,480	38,510	-4,258	-4,288
1182		Fazenda Esperança	_	Marechal Deodoro	Barreiras	179.532	8.929.002	52,449	58,530	58,550	-6,081	-6,101
1184		Faz. Mello		Marechal Deodoro	Barreiras	182.216	8.919.468	74,184	22,470	22,490	51,714	51,694
1186		Povoado Malhados		Marechal Deodoro	Barreiras	184.214	8.918.671	16,502	3,560	3,570	12,942	12,932
1196		P.Bentivi		Marechal Deodoro	Barreiras	181.636	8.920.606	34,374	32,340	32,350	2,034	2,024
1212		Povoado São Sebastião		Marechal Deodoro	Barreiras	179.023	8.913.294	74,515	68,360	68,360	6,155	6,155
1965		Loteamento Laguna		Marechal Deodoro	Barreiras	189 655	8 927 538	68,257	62,500	62,510	5,757	5,747

10.2. Comparação da Potenciometria Atual (nas Duas Etapas) com a Potenciometria da Década 2000.

Apesar de já ter sido iniciada a recuperação de níveis ao final da década de 90 como foi demonstrado na análise da potenciometria da década de 2000, o processo continuou durante a década de 2000 até o ano atual (2010), como será a seguir comentado.

A comparação entre os mapas potenciométricos da década 2000 com o atual revela os seguintes pontos comuns e de discordância:

A - Pontos comuns aos dois mapas

- A.1 O sentido de fluxo geral para o Oceano Atlântico e para a Lagoa do Mundaú;
- A.2 Elevada depressão cotas de -20 m de Ponta Grossa a Pontal da Barra;
- A.3 A região do Tabuleiro dos Martins-Antares-Santa Lucia-Clima Bom está com cotas da superfície potenciométrica variando entre 40 e 50 m.

B - Pontos de discordância

- B.1 Na região em torno da Lagoa do Mundaú as cotas antes variavam entre 10 m no Mustange a -10 m no Bebedouro e agora estão entre 40 m e 30 m respectivamente, mostrando uma recuperação dos níveis da ordem de 30 m;
- B.2 Nas regiões de Jacintinho, Reginaldo, Feitosa e Mangabeiras ocorria uma drenagem radial centrípeta com cotas potenciométricas da ordem de -10 m e atualmente estão com cotas da ordem de 20 m, mostrando uma recuperação da superfície potenciométrica da ordem de 30 m;
- B.3 No Parque São Jorge, onde antes havia uma drenagem radial centrípeta com cota de -20 m atualmente apresenta cota de 10 m, ainda radial centrípeta.

C - Conclusões

- C.1 Em todas as áreas onde ocorreu recuperação dos níveis da ordem de 30 m houve uma grande desativação de poços da CASAL em virtude de salinização ou outras causas ocorridas. Dos mais de 300 poços já perfurados a CASAL opera hoje apenas 150;
- C.2 Na região de tabuleiros mais afastados da costa, não ocorreu salinização e os pouco poços da CASAL não foram desativados;
- C.3 A área de estudos do mapa do ano de 2000 foi de apenas 93 km², enquanto nos estudos atuais a área é de 1.432 km² pelo que não se pode obter uma correlação completa.

Não apenas a salinização da água dos poços provocou a desativação de poços nas diversas baterias operadas pela CASAL ao longos dos últimos 15 anos. No quadro 10.2, são mostradas, para as distintas baterias de poços o número de poços desativados e a respectiva causa.

Quadro 10.2 – Situação de desativação de poços da CASAL.

BATERIA	BAIRRO	NÚN	/IERO DE P	oços	% DE POÇOS	CAUSA(S) da DESATIVAÇÃO	VOLUME
DATERIA	DAIRRO	TOTAL	ATIVOS	INATIVOS	DESATIVADOS	CAUSA(S) da DESATIVAÇAU	DESATIVADO (m³/h)
Bebedouro	Bebedouro	25	5	20	80,00	Salinização	2.700
Alfredo G.Mendonça	Jacarecica	4	1	3	75,00	Salinização, Ferro e Gestão	30
Ladeira do Bolão	Bom Parto	9	6	3	33,33	Gestão	400
Baixo Reginaldo	Poço	13	0	13	100,00	Salinização e fero	2.200
Reginaldo	Reginaldo	21	6	15	71,43	Gestão e Pratagi	1.590
Clima Bom	Clima Bom	6	4	2	33,33	Gestão	20
Dom Adelmo Machado	Cruz das Almas	4	2	2	50,00	Gestão	60
Pça.Gonçalves Ledo	Farol	6	0	6	100,00	Salinização	170
Farol	Farol	8	4	4	50,00	Gestão	440
José Tenório	Serraria	10	5	5	50,00	Gestão	100
Mangabeiras	Mangabeiras	9	1	8	88,89	Gestão e ferro	650
Osman Loureiro	Clima Bom	6	2	4	66,67	Gestão	80
Benedito Bentes	Benedito Bentes	11	5	6	54,55	Gestão e Pratagi	350
		132	41	91	68,94		8.790
							ou: 77x10 ⁶ m ³ /ano

Verifica-se que o total de 91 poços desativados provocou uma redução da ordem de 77 milhões de metros cúbicos anuais o que resulta numa recuperação dos níveis da superfície potenciométrica da região.

10.3. Considerações Finais

Nos níveis atuais de explotação do sistema aquífero Barreiras-Marituba a potenciometria revela uma condição de sustentabilidade que deve ser preservada a fim de não retornar a situação anterior, da década 90, em que uma grande parte dos poços em operação teve que ser desativada por salinização da sua água.

Os aquíferos da região estão restituindo para a superfície do terreno sobretudo aos corpos d'água acumulados nas lagoas de Mundaú e Manguaba, além do escoamento subterrâneo em direção ao oceano, que mantém em equilíbrio a interface água doce/água salgada.

O estudo de modelagem matemática apresentado no capítulo 11 deste relatório irá definir melhor as condições de explotação dos aquíferos, sobretudo na região urbana de Maceió.

11. MODELO NUMÉRICO EM DIFERENÇAS FINITAS DO FLUXO SUBTERRÂNEO E DA INTERFACE MARINHA DA REGIÃO METROPOLITANA DE MACEIÓ

Foi elaborado um modelo de fluxo subterrâneo da Região Metropolitana de Maceió numa área retangular, com uma área total de 10.942,12 km², possuindo um comprimento de 139,2 km e largura de 76,6 km.

No presente trabalho é apresentado o modelo numérico em diferenças finitas dos aquíferos da Região Metropolitana de Maceió – RMM e suas adjacências, com o objetivo de avaliar o impacto da explotação de água subterrânea desde a década de 1960 até os dias de hoje e para os próximos quarenta anos, bem como, os possíveis impactos do avanço da interface água doce/água salgada.

Os modelos, em linhas gerais, são simplificações da realidade, mas, ao mesmo tempo são ferramentas importantes nas mais diversas áreas de atividades. A complexidade de um modelo dependerá dos seus objetivos e das informações disponíveis, por exemplo, um manequim de vitrine, que é um modelo do corpo humano, não serve para aulas de anatomia. Mas, se nunca tivéssemos tido acesso ao interior do corpo humano não poderíamos confeccionar um "boneco" para aula de anatomia.

11.1. A Área Modelada

A área modelada é um retângulo de 139944 m x 79374 m, cujo lado maior está alinhado na direção NE-SE, Figura 11.1. A cidade de Maceió fica aproximadamente no centro desse retângulo. Embora a área de interesse fosse a RMM, se estendeu os limites do modelo para NE e SW para minimizar efeitos hidráulicos desses limites, caso eles coincidissem com os limites da RMM. Para SE o limite foi o Oceano Atlântico e para NW o embasamento cristalino.

Considerando o vértice 1 como sendo vértice mais ao sul e os demais contados a partir desse no sentido horário, temos as coordenadas para os vértices da área modelada: Vértice 1: 10° 15' 57.30487"S e 35° 55' 27.06586"W; Vértice 2: 09° 47' 14.24443"S e 36° 27' 36.43628"W; Vértice 3: 08° 51' 15.32471"S e 35° 36' 38.49003W"; Vértice 04: 09° 19' 47.99888"S e 35° 04' 44.12750"W.

11.2. Discretização do Modelo

Ao contrário das soluções analíticas da equação diferencial do fluxo subterrâneo, que são soluções continuas, as soluções numéricas só são resolvidas em pontos previamente determinados, nos chamados nós, ou seja, são modelos discretos. A discretização dos modelos numéricos em diferenças finitas é feita reticulando a área modelada em linhas e colunas, formandos células quadradas ou retangulares.

A área modelada foi dividida em 97 linhas e 118 colunas (Figura 11.2). O espaçamento entre as linhas e as colunas não foram regulares. As larguras das linhas variaram entre 198,5 metros e 1587,5 metros, enquanto que as colunas variaram entre 350,0 metros e 2799,0 metros.

O adensamento da malha foi feito basicamente em função dos poços existentes. Onde havia mais poços a malha foi mais estreita. Também se adensou mais a malha ao longo da linha de costa da RMM para melhorar o posicionamento da interface água doce/água salgada.

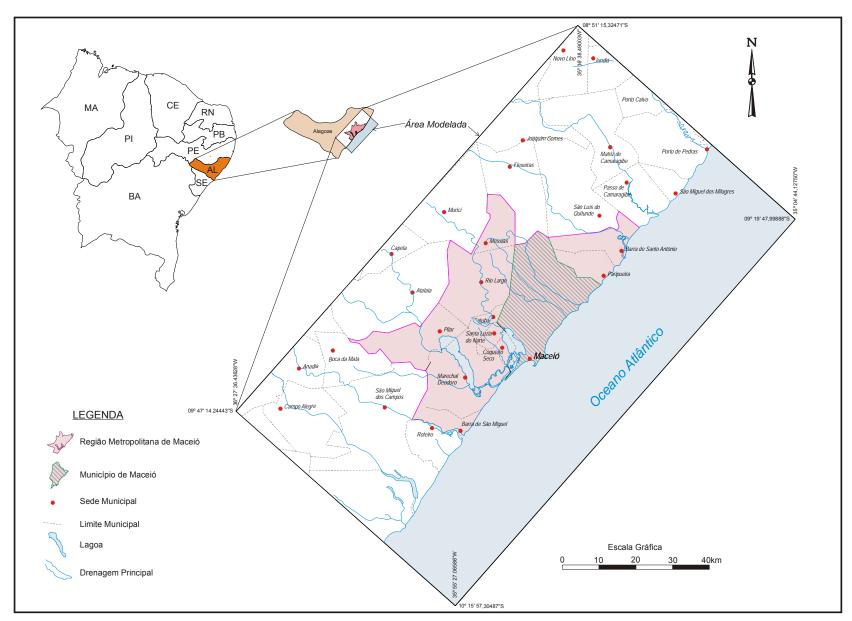


Figura 11.1 – Mapa de situação e localização da área modelada.

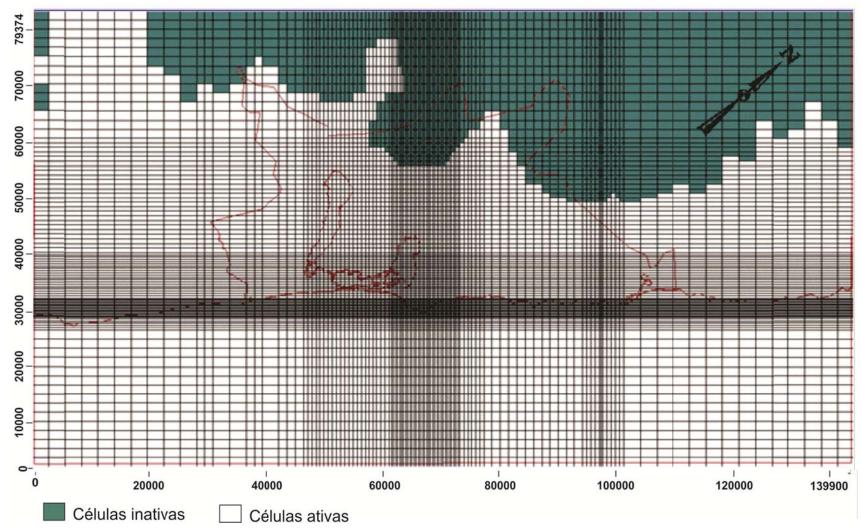


Figura 11.2 – Discretização da área modelada.

Na vertical o modelo foi discretizado em nove camadas. As camadas do modelo necessariamente não precisão coincidir com camadas geológicas ou com aquíferos. Muitas vezes se usa uma discretização na vertical diferente da geológica para se verificar a influência das componentes de fluxo vertical. No caso do modelo da RMM o objetivo foi exatamente esse, observar o comportamento dos fluxos verticais, principalmente na modelagem da interface marinha, portanto, a discretização usada na vertical não coincide com a sequência dos estrados observados na área. No total o modelo ficou com 103014 células, sendo que, muitas dessas células foram definidas como inativa por estarem na área do cristalino, que foi considerado no modelo como impermeável. Cada uma das células é representada por um nó, ponto no centro da célula, onde todas as características da célula e valores de carga hidráulica estão associados a esse nó.

11.3. Geometria do Modelo

O primeiro passo na modelagem numérica de um aquífero é a definição de sua forma. Para isto, é importante se dispor de bons mapas e perfis geológicos. Na definição da geometria do modelo foram utilizados o mapa geológico da área (apresentado em relatório anterior) e as informações de perfis litológicos dos poços, principalmente dos poços da PETROBRAS. A partir desses poços foram construídos cinco perfis geológicos, apresentados na Figura 11.3. Na Figura 11.4 é mostrada a correspondência entre o perfil geológico AB e uma seção do modelo no mesmo local do perfil AB.

Alguns poços da PETROBRAS mostraram sedimentos até 2000 metros de profundidade, sem ter atingido o embasamento cristalino, porém, na modelagem a profundidade foi limitada a cota -500 metros, o que corresponde a cerca de 600 m de profundidade. Este limite foi estabelecido por conta a pouco profundidade dos poços em relação a espessura do aquífero.

Dos 1757 poços do cadastro com informação de profundidade, apenas 432 têm profundidades superiores ou iguais a 100 metros. Se este limite for estendido para 200 m só foram registrados 122 poços, para 200 o número de poços é reduzido para 36, ou seja, a grande maioria dos poços está captando a parte mais superficial da sequência sedimentar. O modelo também mostrou que os efeitos da penetração parcial para espessuras de 600 metros inexistem.

A superfície do terreno utilizada foi elaborada a partir das informações de imagens SRTM (*Shuttle Radar Topography Mission*) da área.

11.4. Modelo Conceitual

Com base nas informações da geometria, balanço hídrico, geologia e hidrogeologia da área foi possível estabelecer o modelo conceitual hidrogeológico para a RMM e suas adjacências.

O modelo aqui proposto foi concebido considerando uma visão regional, Assim, o modelo concebido é de um sistema aquífero, onde todas as formações sedimentares têm comunicação hidráulica, podendo localmente se comportar como aquíferos confinados, ou não.

A alimentação básica do sistema é pela infiltração direta da chuva, sendo os exutórios os rios e o mar. Na porção oeste o sistema é limitado pelo embasamento cristalino, considerado aqui impermeável. A base foi limitada na cota -500 m, apesar de existirem mais de 2000 metros de sedimentos. Porém, esse limite mostrou-se compatível para as condições dos poços existentes, assim, para o modelo, abaixo da cota -500 é considerado impermeável.

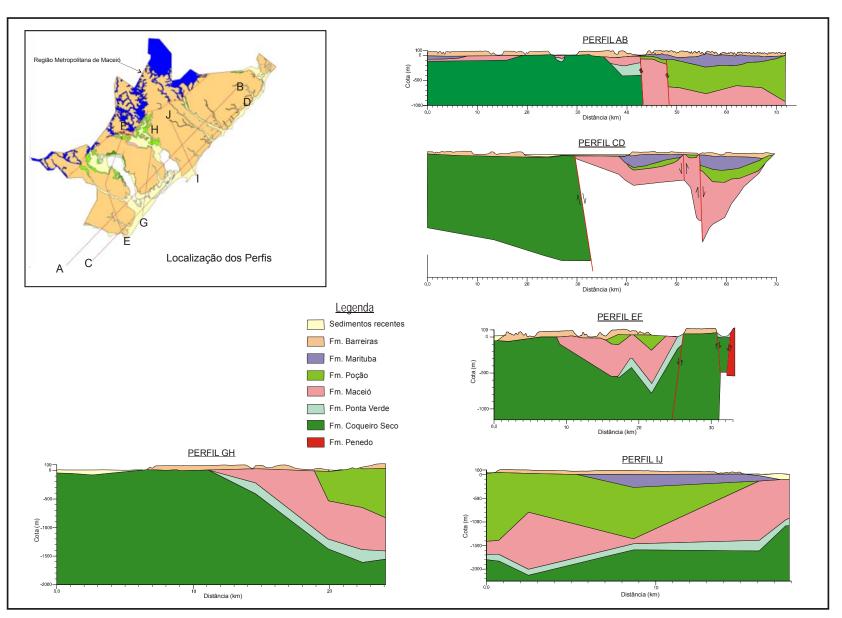


Figura 11.3 – Perfis Geológicos.

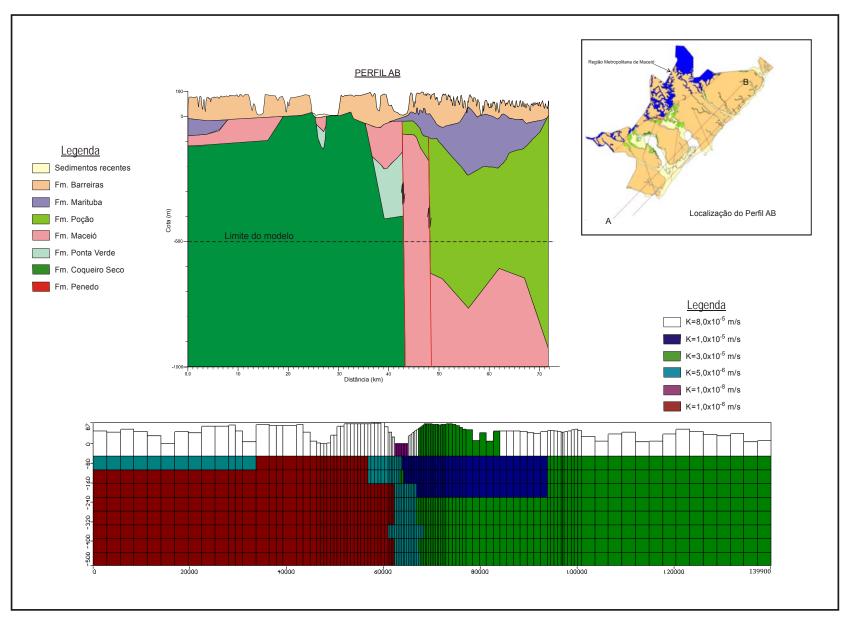


Figura 11.4 – Correspondência entre o perfil geológico e o perfil do modelo.

11.5. Parâmetros Hidrogeológicos

Os parâmetros hidrogeológicos adotados foram aqueles apontados como representativos para as diversas formações presentes na área na tese de Wilton Rocha, intitulada Estudo da Salinização das Águas Subterrâneas na Região de Maceió a partir da Integração de Dados Hidrogeológicos, Hidrogeoquímicos e Geoelétricos, defendida em 2005.

Com base no mapa de geológico da área, do mapa geológico pré-Barreiras e dos perfis apresentados na Figura 11.3 foram feitas as distribuições da condutividade hidráulica (K) nas três dimensões.

Nas Figuras 11.5 e 11.6 é apresentada a distribuição de condutividade hidráulica para a camada 01 e camada 02 respectivamente. A camada 01 corresponde aproximadamente ao conjunto da Fm. Barreiras e sedimentos recentes.

Na camada 01 foi adotada de forma extensa o valor de K= 8,0x10⁻⁵ m/s, com duas pequenas manchas de valores diferentes. Uma de 1,0x10⁻⁸ m/s e outra de 3,0x10⁻⁵ m/s. A primeira corresponde à área da Lagoa do Mundaú e a segunda a noroeste de Maceió. A primeira foi necessária para poder diminuir o fluxo de água salgada para Maceió. Sem esse valor baixo de K não se conseguia o modelo de salinização. A segunda mancha de K foi necessária para reter um pouco o fluxo subterrâneo e melhorar a calibração do modelo de fluxo.

Os valores de armazenamento especifico (Ss), porosidade total (Pt), porosidade efetiva (Pe) e porosidade efetiva para fluxo (Pf) foram considerados constantes para todo o modelo, os valores foram os seguintes: Ss= 1,25x10-6 m⁻¹, Pt=0,2; Pe=0,1 e Pf=0,08. Manter esses valores constantes prende-se ao fato de os modelos serem pouco sensíveis as suas variações, ou seja, seriam necessárias grandes variações para se perceber alguma mudança significativa nos resultados.

11.6. Condições de Contorno

Além da necessidade do conhecimento dos valores dos parâmetros hidrodinâmicos em cada nó, também é necessário que sejam definidos os tipos de limites do modelo, ou seja, as condições de contorno (ver apêndice).

Definir as condições de contorno significa estabelecer as relações dos aquíferos modelados com o meio contíguo. Por exemplo, se o limite de um aquífero se dá com rochas impermeáveis, não haverá fluxo entre o aquífero modelado e a formação limítrofe.

Esse tipo de contorno é definido como limite de fluxo nulo. Se o aquífero modelado limita-se, por outro lado, com um grande corpo de água, cuja carga hidráulica não varia no tempo, esse limite é definido como limite de carga constante. Basicamente, definem-se em modelagem os dois tipos de limite a seguir indicados:

- <u>Limite de fluxo conhecido</u> pode ser fluxo nulo ou diferente de zero. Neste último caso, o fluxo é dito positivo quando é um aporte para o aquífero, sendo dito negativo em caso contrário.
- Limite de carga conhecida pode ser de carga constante ou de carga variada.

Ainda são consideradas como parte da definição das condições de contorno, as influências causadas pelos rios (influente ou efluente), os efeitos da recarga por infiltração e evapotranspiração.

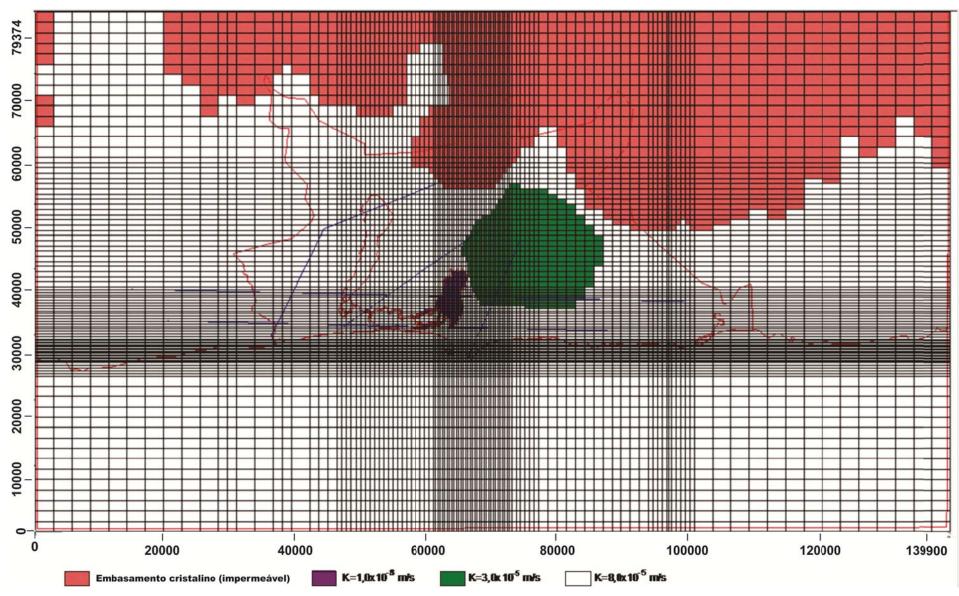


Figura 11.5 – Distribuição da condutividade hidráulica para a camada 01.

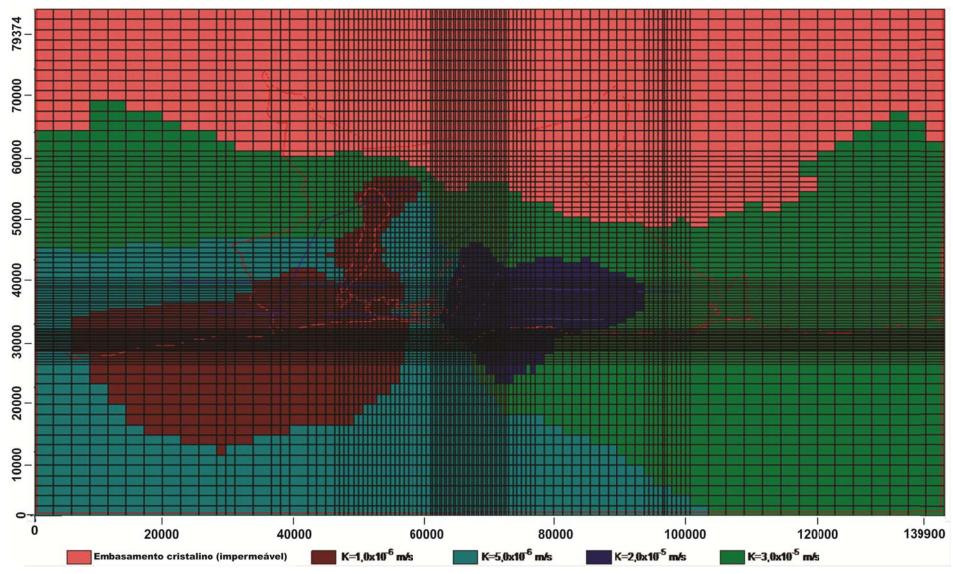


Figura 11.6 – Distribuição da condutividade hidráulica para a camada 02.

No mapa da Figura 11.7 são apresentadas as condições de contorno usadas e no mapa da Figura 11.8 a distribuição da infiltração.

Embora não representados no mapa, os limites esquerdos e direito (SW e NE) são do tipo fluxo nulo. Para o limite rio só foram considerados os rios de maior porte. Os limites de carga constante são representados pelo mar e as lagoas, sendo considerado o valor da carga hidráulica igual a zero metro para esse limite.

Foi considerada uma taxa de infiltração única para toda a área, e foi adotado o valor empregado no cálculo da reserva reguladora que é de 250 mm/ano. Usando valores diferentes não se conseguiu uma calibração satisfatória.

Além das condições de contorno para o aspecto hidráulico também há as para o estudo da interface água doce/água salgada. Foram utilizados dois limites de concentração constante, um para o mar e outro para as lagoas. Para o mar foi considerada uma concentração de 35 g/l de sólidos totais de dissolvido (STD), enquanto para as lagoas foram utilizados 2 g/l, já que Silva (2005), em sua dissertação de mestrado (Caracterização do Processo de Salinização do Aquífero Marituba no Bairro do Mutange, Lagoa Mundaú, Maceió – Alagoas), menciona que na foz, próximo ao mar, a concentração é de 33,5 g/l e no delta do rio Mundaú de 100 mg/l, na estação chuvosa. Foi considerada uma recarga de concentração de 50 mg/l, esse valor representa a quantidade de sais que vem junto com água de chuva mais os dissolvidos no solo no caminha da água até o aquífero. Esse valor foi estabelecido com base nos dados de 190 poços com resultados de STD determinados em laboratório, que revelou um média de 148,7 mg/l.

11.7. Calibração

Definida a geometria do modelo, os parâmetros hidrodinâmicos e as condições de contorno, o passo seguinte é verificar a validade do modelo, ou seja, se o mesmo reproduz, com aproximação satisfatória, solicitações reais dos aquíferos modelados. Esse passo na modelagem é chamado de calibração.

Para a calibração, podem ser seguidos dois caminhos. O primeiro é quando se conhece a potenciometria inicial dos aquíferos, a qual é condicionada apenas pelo escoamento natural, não havendo, portanto, ações externas (bombeamentos ou injeções). Neste caso a calibração é feita em regime de fluxo permanente, variando-se os parâmetros hidrodinâmicos, infiltrações, a fim de reproduzir a potenciometria inicial conhecida. Quando esta reprodução é satisfatória, o modelo é dito então calibrado.

O segundo caminho é quando se dispõe de uma série histórica de descargas e níveis observados, além da potenciometria observada no início do registro da série histórica. Nesta situação, a calibração é feita em regime transitório, de modo que, partindo-se da potenciometria inicial observada e, utilizando as descargas da série histórica, busca-se reproduzir a evolução dos níveis observados.

Como no caso anterior, só são passíveis de manipulação os parâmetros hidrodinâmicos e os valores de infiltração. A manipulação desses parâmetros, embora possa ser de forma livre, será limitada pelo grau de conhecimento hidrodinâmico dos aquíferos modelados.

Quanto menor o conhecimento, mais liberdade se terá na manipulação e, consequentemente, menos preciso o modelo será. Quando o aquífero é bem conhecido, a liberdade de manipulação das variáveis é menor, o que resulta em um modelo mais confiável.

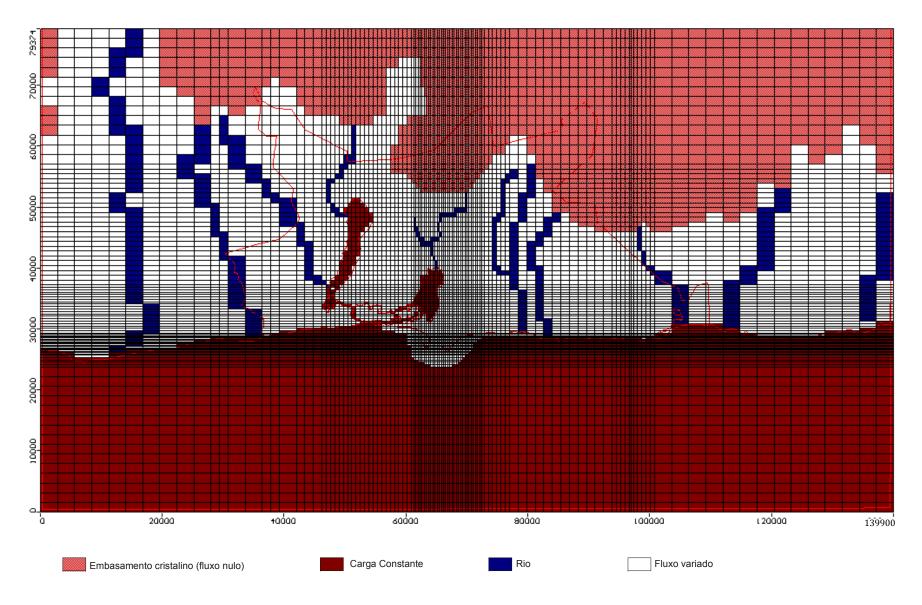


Figura 11.7 – Condições de contorno.

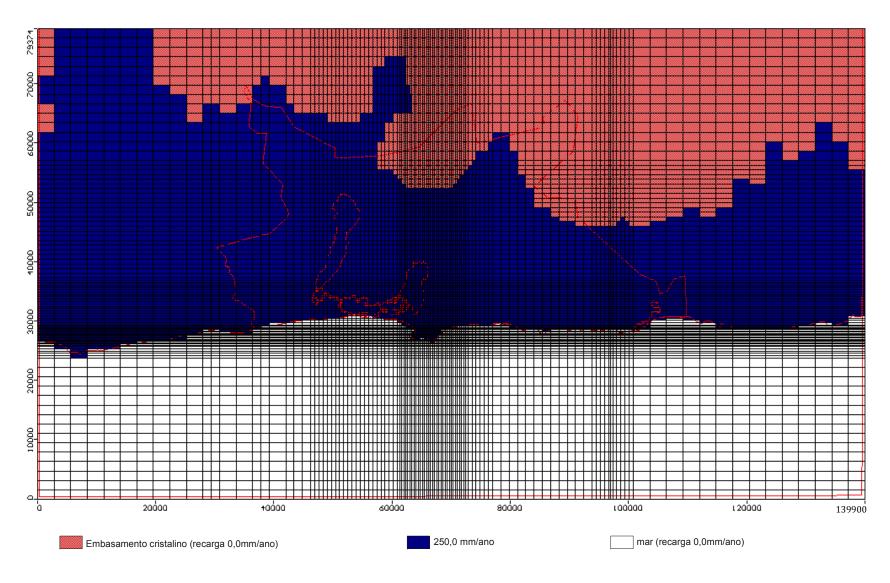
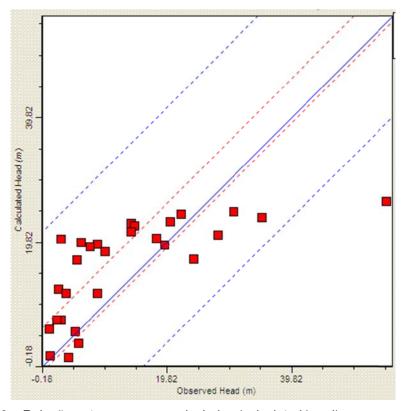



Figura 11.8 – Distribuição da recarga na área modelada.

Para calibração do modelo da RMM segui-se o primeiro caminho descrito nos parágrafos anteriores. Para tanto foram utilizadas as informações de vinte e oito poços cadastrados pela SUDENE e que estão no Inventário Hidrogeológico Básico do Nordeste, folha 21, de 1978. Todos esses poços tinham informações do nível estático e coordenadas, alguns tinham informação de cota e da carga hidráulica (cota do NE). Para complementar as informações de cota de alguns poços foram utilizadas imagens SRTM. Esses poços foram construídos na década de 60 e inicio da década de 70, ou seja, as informações mais antigas conseguidas (Quadro 11.1). Considerou-se que a carga hidráulica desses poços representaria a superfície potenciométrica original, antes de grandes influências dos atuais bombeamentos, ou seja, a superfície de equilíbrio.

Após diversas alternativas de infiltrações e parâmetros chegamos aos valores apresentados nos itens anteriores, ao gráfico da Figura 11.9 e ao mapa potenciométrico apresentado na Figura 11.10, que será considerada a potenciometria inicial.

Figura 11.9 – Relação entre as cargas calculadas (calculated head) x cargas observadas (observed head).

O gráfico da Figura 11.9 mostra que a raiz da média quadrática (RMS) normalizada foi de 17,49%. Em geral, se aceita que modelos bem calibrados esse valor deva ficar abaixo de 10%, porém considerando a limitação dos dados foi considerado o valor de 17,49% como satisfatório para o atual nível de conhecimento do problema.

Na Figura 11.11 é apresentada a distribuição de salinidade para as condições de equilíbrio de carga hidráulica apresentado na Figura 11.10. As informações disponíveis só permitiram detalhar o posicionamento da interface marinha nas proximidades de Maceió.

Quadro 11.1 – Carga hidráulica na RMM entre 1960 e 1970.

Poço	Local	Município	UTME (m)	UTMN (m)	Cota (m)	Data	Prof. (m)	NE (m)	Cota NE (m)	Cota SRTM (m)	h usada (m)
130.21	B. Sto Antonio	B. Sto Antonio	224742	8957428	1,0	24/04/1964	26,5	0,0	1,0	8,8	1,0
131.21	BR 101 km9	Maceió	197725	8939007		06/07/1993	60,0	39,5		70,0	30,5
132.21	Posto rod fed	Maceió	197707	8941313	86,6	30/11/1965	52,0	15,0	71,6	70,0	55,0
133.21	Fábrica Five	Maceió	194964	8940830			74,0	38,0	47,6	58,3	20,3
144.21	M. Deodoro	M. Deodoro	181833	8923654	2,6	22/08/1970	4,0	1,1	-1,6	6,7	5,6
157.21	-	Maceió	200896	8943183				3,0		25,0	22,0
168.21	Motel Sta Rita	Pilar	176222	8937445			60,0	55,0		79,0	24,0
178.21	Cidade dos menores	Maceió	201128	8937005		05/11/1966	90,8	47,9		75,8	27,9
179.21	Núcleo de colonização	Pilar	199146	8933023		11/06/1963	83,0	51,0		56,4	5,4
185.21	Alto do Feitosa	Maceió	200999	8930270		17/12/1965	86,1	7,5		9,8	2,3
190.21	Vila Mangabeira	Maceió	194502	8941287		12/09/1966	24,0	3,0		17,0	14,0
196.21	Moinho Indigina	Maceió	201914	8930278			64,0	2,0		10,6	8,6
197.21	UFAL	Maceió	192649	8944039			82,0	25,0		60,0	35,0
199.21	Socôco	Maceió	202342	8937845			54,0	6,0		12,0	6,0
202.21	Guachuma I	Maceió	208090	8940318	6,0			0,9	5,1		5,1
203.21	Guachuma II	Maceió	208147	8940934	10,0			9,1	0,9		0,9
204.21	Garça Torta	Maceió	209995	8942639	10,0			6,0	4,0		4,0
205.21	Riacho Doce I	Maceió	207457	8943265	10,0			7,3	2,7		2,7
207.21	Riacho Doce II	Maceió	207091	8939388	6,0			3,9	2,1		2,1
208.21	Pratagi	Maceió	206258	8940458	5,0			1,4	3,6		3,6
209.21	Prop Sto Guguri	Maceió	201170	8935591	10,0			1,4	8,6		8,6
210.21	Loteam, Breda	Maceió	201414	8935593	8,0			0,5	7,5		7,5
211.21	Jacarecica III	Maceió	201345	8936576	10,0			7,3	2,7		2,7
213.21	Barro Duro	Maceió	200873	8938386				40,4		55,0	14,6
214.21	Barro Duro	Maceió	201335	8937929				50,0		64,0	14,0
215.21	Serraria	Maceió	201916	8937749				50,0		68,0	18,0
240.21	Granja 3 Marias	Maceió	202135	8937013				50,6		70,0	19,4
244.21	Barro Duro	Maceió	200663	8934142				10,2		20,0	9,8

Obs.: Poço: referência da SUDENE; Data: data de perfuração do poço; Prof.: profundidade do poço; NE- nível estático, Cota STRM: cota determinada a partir de imagem SRTM; h usada: carga hidráulica informada ao modelo.

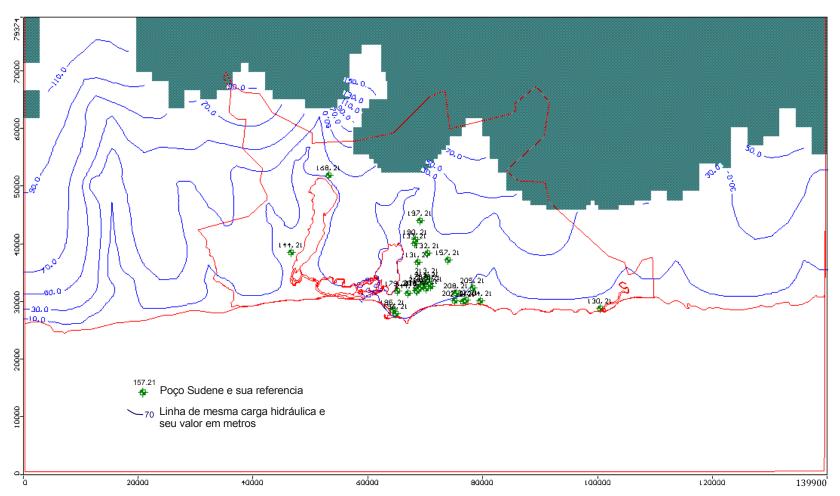


Figura 11.10 – Potenciometria inicial.

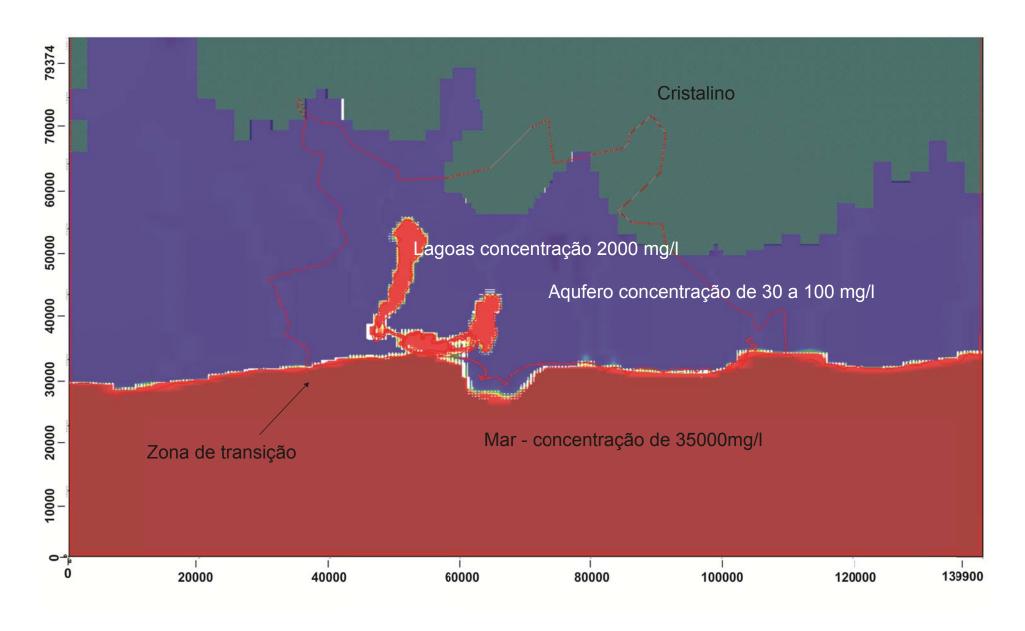


Figura 11.11 – Distribuição da salinidade em condições de equilíbrio.

A menor distância que a interface marinha poderia estar na década de 60 seria a cerca de 2000 metros da costa. Afastado de Maceió considerou-se com a interface marinha estando próxima a linha de costa, uma vez que, os dados disponíveis não permitiram fazer qualquer inferência sobre a posição dessa interface nesses locais.

11.8. Validação

Uma forma encontrada para verificar se a calibração era aceitável seria reproduzir a potenciometria no inicio de janeiro de 2010, com base nos dados obtidos no cadastro de poço. Essa verificação em modelagem é chamada de validação.

Do cadastro de poços foram utilizados 193 poços com informação de nível estático, situados na área do modelo, a partir dos quais foram determinadas as cargas hidráulicas observadas (dez/jan 2010) para serem comparadas com as cargas hidráulicas calculadas pelo modelo. Foram utilizados 1127 poços com informação de vazão, regime de funcionamento e data de construção.

O poço mais antigo registrado no cadastro foi construído em 12/09/1966. No Quadro 11.2, segue o número de poços construídos em diferentes épocas:

Quadro 11.2 – Variação da quantidade de poços construídos.

Intervalo de tempo	Quantidade de poços construídos
1996-1974	18
1975-1979	39
1980-1984	90
1985-1989	184
1990-1994	316
1995-1999	147
2000-2004	263
2005-2009	70

Observa-se no Quadro 11.2 que no período de 90 a 94 foi quando se construiu mais poços na RMM. A partir de 2005, verifica-se um declínio acentuado na quantidade de poços construídos. O Quadro 11.2 é válido para os poços utilizados na validação, mas que representa mais de 50% dos 2185 poços cadastrados.

Introduzir os 1127 poços no modelo um a um, para considerar exatamente a data em que foram construídos, e portanto, o tempo exato de funcionamento, seria uma tarefa árdua. Considerando apenas 1 minuto para introduzir um poço seriam necessários 1127 minutos, o que equivale a 18,8 horas, ou seja, mas de dois dias de trabalho. Esse problema também se verificaria no momento da edição dos poços.

Para contornar essa situação foi verificado quanto cada poço bombeava por dia, considerando o regime de bombeamento cadastrado. Depois se determinou o número de dias entre a data da construção e 31/12/2009. Feitos esses cálculos tínhamos quanto cada poço bombeou durante a sua existência (considerado que o mesmo funcionou todos os dias de acordo com o regime de funcionamento cadastrado). Somando-se as descargas totais de todos os poços tínhamos quanto foi retirado do aquífero no período de 12/09/1966 a 31/12/2009 (15817 dias), o que será chamado de descarga global. Ao invés de se dividir simplesmente a vazão global pelo número de poços, seria mais representativo fazer a divisão considerando as características individuais de cada poço, ou seja, poços que tinham as maiores vazão deveriam continuar tendo as maiores vazões, e não todos os poços com a mesma vazão.

Para fazer essa divisão mais representativa, primeiro foram somadas as descargas diárias de todos os poços, esse total representava 100% e a partir das descargas diárias de cada poço foram determinados os respectivos percentuais que representava da descarga diária em cada poço.

Esses percentuais multiplicados pela descarga global encontraram-se as descargas diárias para cada poço, como se todos tivessem sido construídos em setembro de 1966. A descarga global diária dos poços utilizados no modelo totaliza 128.756,50 m³/dia, o que representa 5.364,8 m³/h, ou 1,49 m³/s.

O que se quis com esse esquema não foi tentar reproduzir a evolução da carga hidráulica ao longo do tempo, mas a carga hidráulica ao final de 2009, momento que se dispunha de cargas hidráulicas observadas para comparar com as cargas calculadas pelo modelo.

Na realidade a informação da potenciometria é de fevereiro de 2010, mas verificou-se que não houve variações significativas na potenciometria entre setembro de 2009 e fevereiro de 2010, por isso, consideramos os valores válidos para 31/12/2009, apenas para coincidir com o final do ano.

Introduzido todos os poços foi feita uma simulação para verificar qual seria a potenciometria ao final do ano de 2009 e comparar com os dados observados. No gráfico da Figura 11.12 mostra a relação entre as cargas observadas, em 193 poços, e as cargas calculadas pelo modelo.

A raiz da média quadrática (RMS) normalizada foi de 13, 61%, melhor do que 17,49% conseguido na calibração. Parte das diferenças entre as cargas são por conta de efeitos locais, que não podem ser reproduzidos em modelos de escala mais regional.

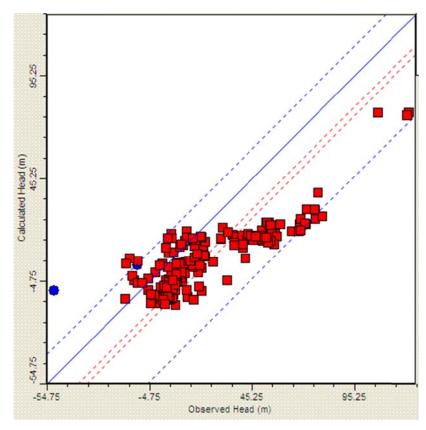
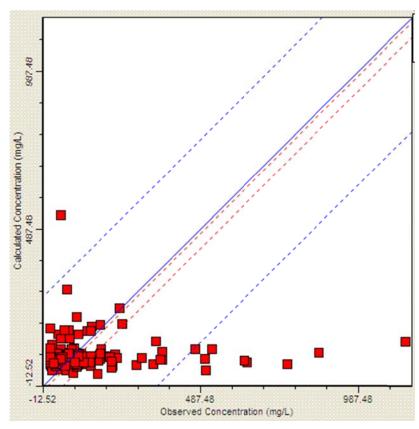



Figura 11.12 – Cargas calculadas (calculated head) x cargas observadas (observed head).

Ao mesmo tempo da simulação de fluxo foi feita a simulação de transporte, para verificar o comportamento da interface marinha após 43 anos de explotação de água subterrânea na área de Maceió.

No gráfico da Figura 11.13 é mostrada a relação entre as concentrações observadas, em 169 poços com dados de sólidos totais dissolvidos, e as concentrações calculadas pelo modelo. A raiz da média quadrática (RMS) normalizada foi de 14,88%. Tal como para as cargas existem vários efeitos localizados que interferem na concentração de sais da água que não podem ser simulados em um modelo de escala regional.

Figura 11.13 – Concentração calculada (calculated concentration) x Concentração observada (observed concentration).

Na Figura 11.14 é apresentado o mapa potenciométrico, após 43 anos de bombeamento, usado para a validação do modelo. É apresentada uma visão geral e um detalhe para o município de Maceió e suas adjacências.

No mapa da Figura 11.15 são apresentados os rebaixamentos para o mesmo período de rebaixamento. Observa-se que os maiores rebaixamentos são de 30 metros, sendo esses localizados entre os bairros do Farol e Poço, na Praça Pitanguinha e nas proximidades de Chã da Jaqueira e Chã do Bebedouro.

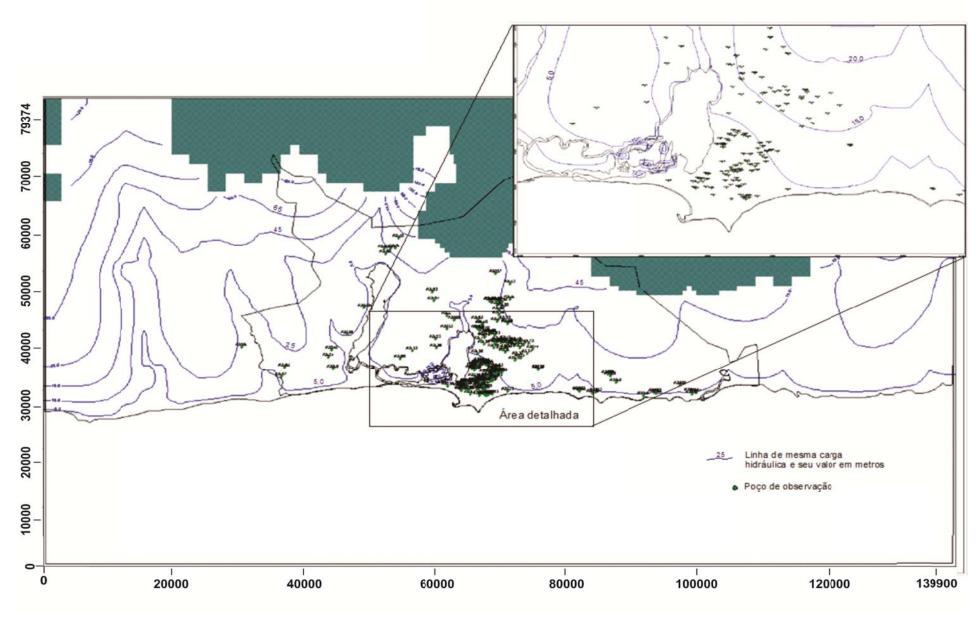


Figura 11.14 – Potenciometria para a validação do modelo (31/12/2009).

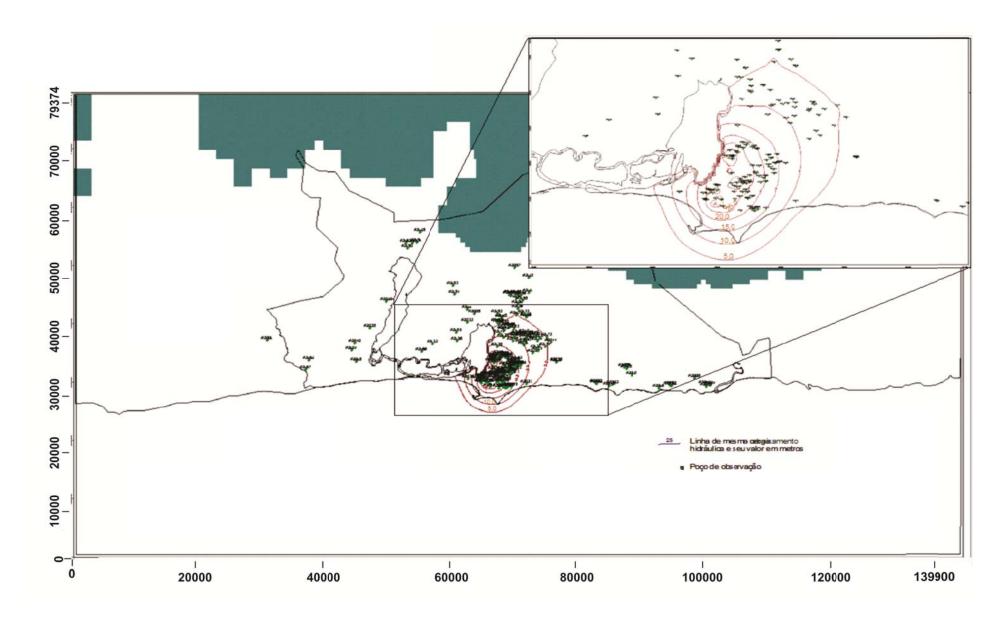


Figura 11.15 – Rebaixamentos após 43 anos de bombeamento.

No mapa da Figura 11.16 é mostrado um detalhe para área de Maceió para a distribuição da salinidade em 31/12/2009. Comparando-se este mapa com o da Figura 11.11 percebe-se um avanço significativo da interface marinha em direção ao continente. Se a posição inicial estiver conforme mostrado na Figura 11.11 a interface marinha está muito próximo a linha de costa e alguns locais já teria avançando um pouco no continente, como nas áreas no entorno do porto de Maceió e na praia da Ponta Verde. Outro ponto de deslocamento significativo da interface marinha é via a Lagoa Mundaú, na sua porção sul/sudeste.

É importe esclarecer que os resultados aqui apresentados são baseados em hipóteses, pois, não se tem informação precisa da posição atual da interface marinha, ou mesmo em épocas pretéritas, bem como os detalhes da geologia da parte submersa. Só com essas informações é que se poderiam estabelecer condições de contorno representativas, necessárias para resultados também representativos. A hipótese considerada de que a interface marinha estaria a cerca de dois quilômetros da costa na década de 60 seria uma posição conservadora. Essa posição representa a menor distância possível para a interface marinha, qualquer posição mais próxima, segundo o modelo aqui desenvolvido, faria com que todos os poços de Maceió, até uma distância de cinco quilômetros da costa, tivessem suas águas salinizadas. Assim, a interface marinha poderia estar mais afastada do que o considerado, mas, não mais próxima. Algumas informações nos levam a crer que a posição da interface assumida não deve se distanciar muito da realidade. A principal delas é a rapidez com que a água de alguns poços da CASAL salinizou, obrigando a empresa a desativar esses poços.

11.9. Simulação de Cenário

Uma vez calibrado e validado o modelo forma feitas duas simulações de cenários, contemplando um alcance de mais 43 anos de explotação de água na RMM, cotados a partir de 01/01/2010. Tendo em vista a posição da interface marinha atual, praticamente em cima da linha de costa a primeira simulação realizada foi para verificar qual seria a posição da interface marinha e da potenciometria considerando que todos os poços usados nos primeiros 43 anos permanecessem funcionando por mais 43 anos, bombeando as mesmas descargas.

Essa simulação foi denominada de cenário 01 e os resultados seriam as previsões para 31/12/2043. Nas Figuras 11.17 e 11.18 são mostrados a potenciometria e os rebaixamentos, respectivamente, resultantes da simulação do cenário 01, para o município de Maceió e suas adjacências.

Comparando-se a potenciometria e os rebaixamento do cenário 01 com os resultados da validação, percebe-se que não houve variações significativas entre os dois períodos considerados (31/12/2009 e 31/12/2043). Isto significa que a explotação do aquífero estaria em regime de fluxo permanente, ou seja, os rebaixamentos já estariam estabilizados atualmente ou muito próximos dessa estabilização.

Portanto, do ponto de vista apenas hidráulico haveria espaço para se aumentar o número de poços ou a descarga dos mesmos. Porém, quando se observa o mapa da Figura 11.19, que mostra a posição da interface ao final dos próximos 43 anos, percebe-se que a interface progrediria cerca de 3 km para o continente, inviabilizado o funcionamento de inúmeros poços.

Percebe-se também uma tendência de encontro da cunha vinda da lagoa Mundaú com a cunha oriunda do mar. Nessa situação só seriam resguardado os poços mais afastados, aqueles distantes, pelo menos, a 5 km da costa. Não foi feita uma simulação maior, mas, pode-se prever que o limite do avanço da interface marinha seria as áreas cujos rebaixamentos são de 30,0 metros ou maiores. (Figura 11.18).

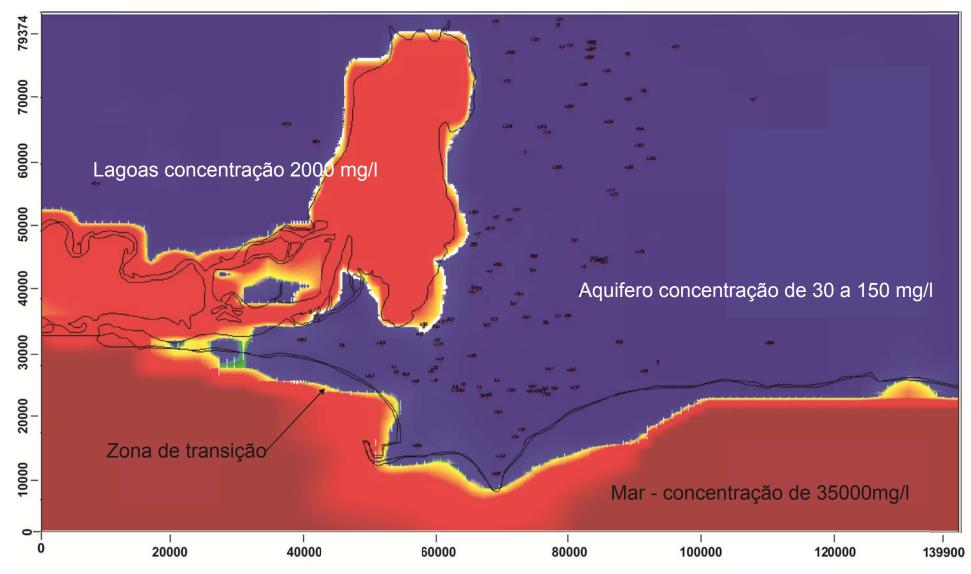


Figura 11.16 – Distribuição da salinidade em 31/12/2009.

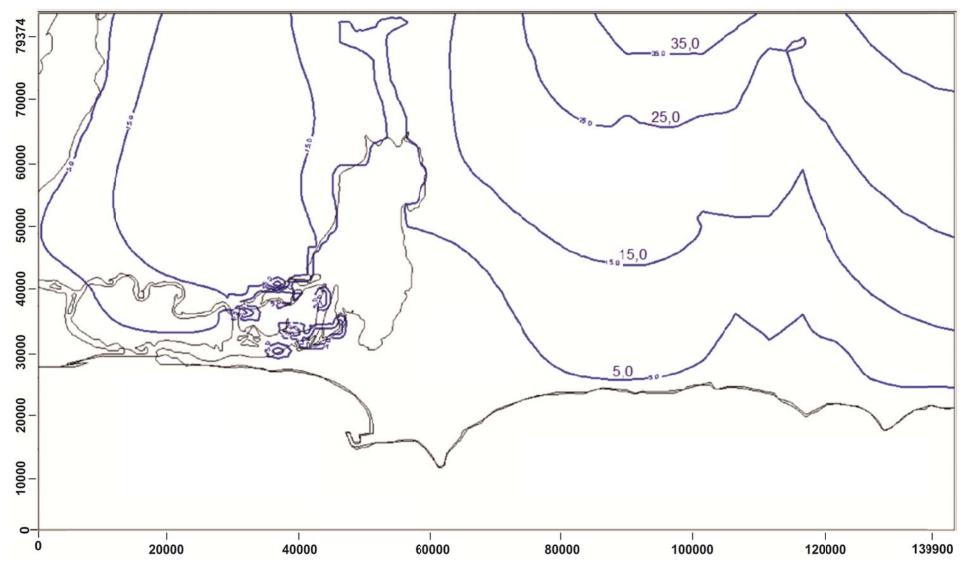


Figura 11.17 – Detalhe da potenciometria em Maceió para o cenário 01.

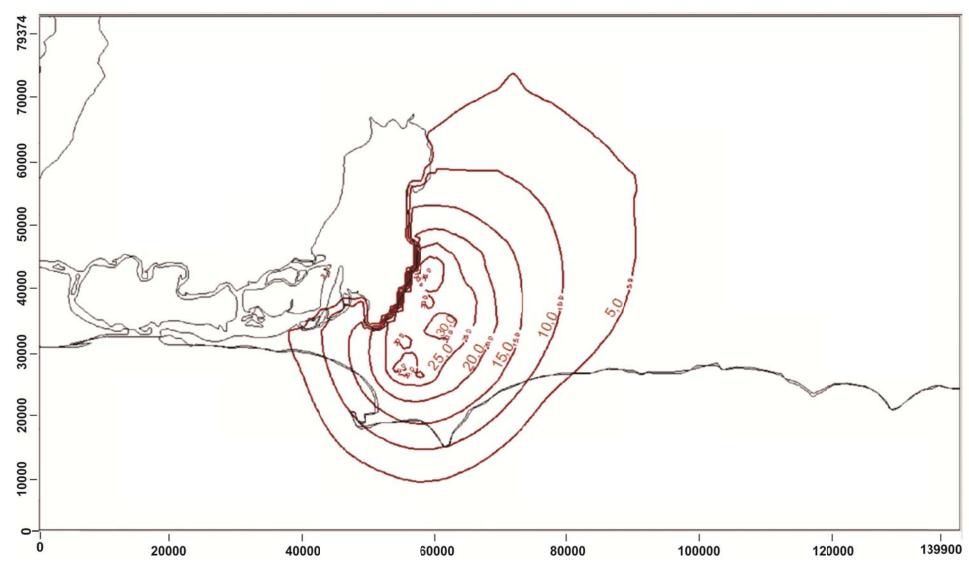


Figura 11.18 – Rebaixamento em Maceió para o cenário 01.

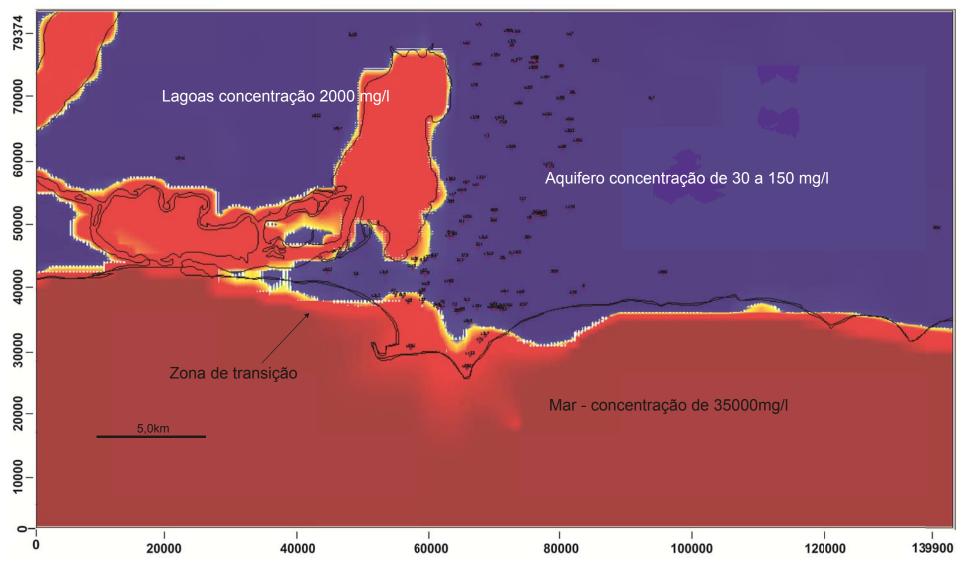


Figura 11.19 – Posição da interface marinha ao final da simulação do cenário 01.

Diante dos resultados do cenário 01 foi simulado um cenário 02 para verificar que condição de explotação não iria alterar significativamente a posição atual da interface marinha. O cenário 02 foi simulado admitindo que a metade dos poços considerados na simulação do cenário 01 seria desativada.

Os poços foram escolhidos aleatoriamente para serem desativados. Assim, todos os poços estariam em funcionamento da década de 60 até 31/12/2009 e somente metade continuaria funcionando até 31/12/2043. Nas Figuras 11.20 e 11.21 são mostrados o mapa potenciométrico e o mapa de rebaixamento, respectivamente. Comparando-se os dois mapas de rebaixamentos verificamos que no cenário 02 os rebaixamentos são menores de 5 a 10 metros na parte mais deprimida.

Essa diferença foi suficiente para recuar a interface marinha (figura 11.22), ficando a área do porto de Maceió como os maiores processos de salinização. Porém, o cenário 02 não nos autoriza dizer que reduzindo pela metade a vazão dos poços atuais não haveria problemas com o avanço da interface marinha. Pois, tal como no cenário 01, o esperado é que um tempo maior desse bombeamento, mesmo menor, a interface chegaria às áreas de rebaixamentos igual a 20 metros.

A diferença básica entre os dois cenários seria a velocidade do avanço da cunha salina, no cenário 01 seria menor.

A simulação desses dois cenários nos mostra a alta vulnerabilidade do aquífero (ou sistema aquífero) frente a explotação da água subterrânea na área da RMM, na realidade como em qualquer aquífero costeiro. Porém, isso não significa que seja inviável a explotação de água na RMM, mas apenas que essa explotação tem que ser bem planejada, mais do que em aquíferos longe do mar. Por exemplo, deve-se priorizar as áreas afastadas da costa, verificar a possibilidade de usar uma "cortina" de poços próximas ao litoral, como uma barreira de proteção, que evitasse o avanço da cunha salina para o continente, entre outras possibilidades.

Caso o planejamento não seja bem feito, corre-se o risco de se construir poços e ter que abandoná-los devido à salinização da água, como já vem sendo feito pela CASAL.

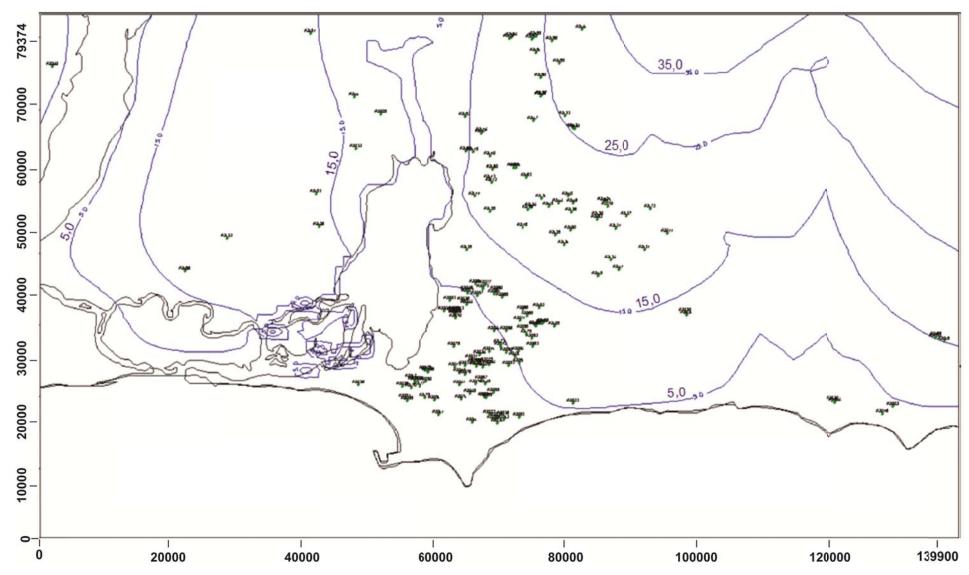


Figura 11.20 – Potenciometria para o cenário 02.

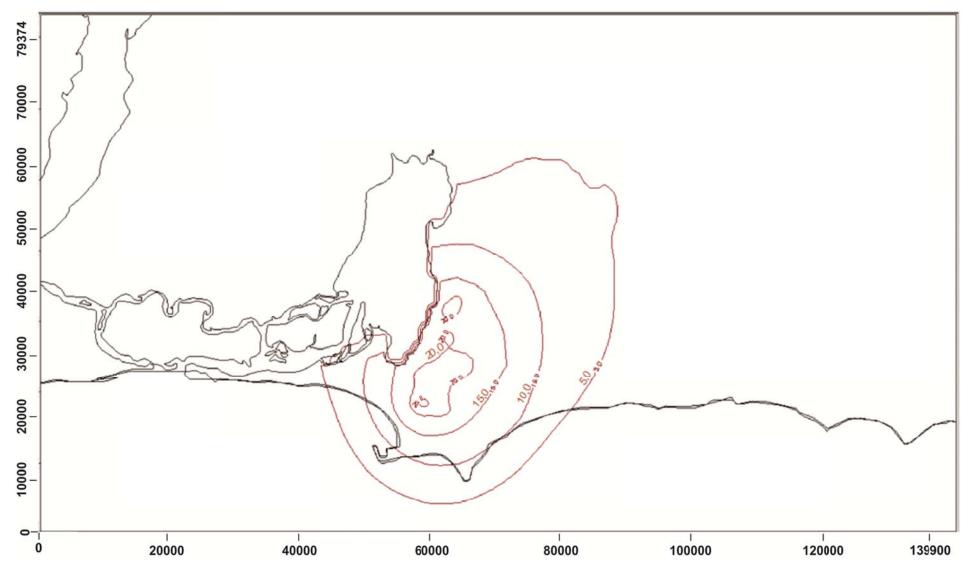


Figura 11.21 – Rebaixamentos para o cenário 02.

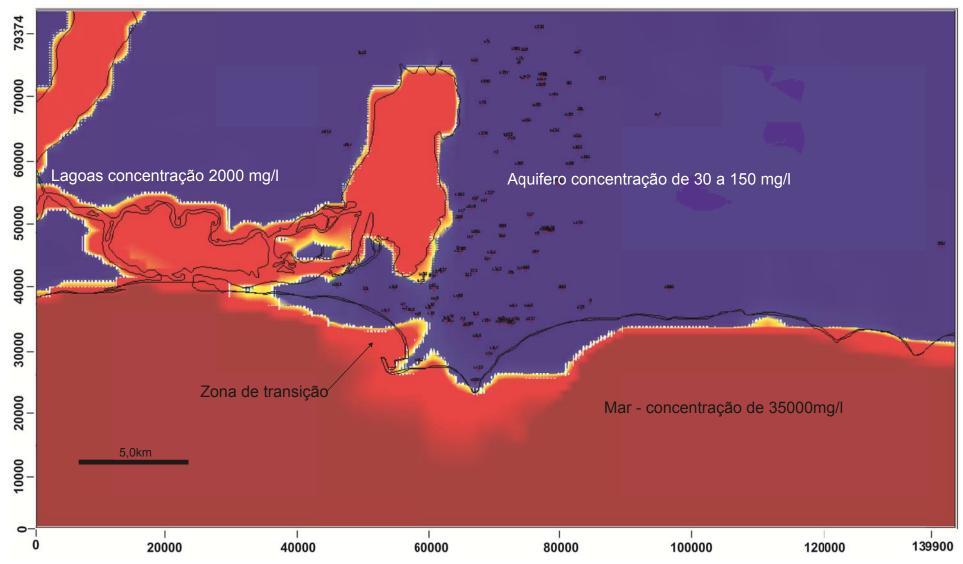


Figura 11.22 – Interface marinha para o cenário 02.

11.10. Conclusões

O modelo elaborado para estudar o fluxo subterrâneo e a interface marinha na Região Metropolitana de Maceió permitiu chegar às seguintes conclusões:

- O modelo ora apresentado é preliminar e deve ser aprimorado à luz de novas informações. É de caráter regional, não sendo adequado para simulações de eventos localizados.
- A calibração do modelo foi feita reproduzindo a potenciometria original, antes dos bombeamentos, em regime de fluxo estacionário. A validação do modelo foi feita, em regime de fluxo transitório, buscando reproduzir a distribuição de cargas em 31/12/2009, levando em consideração as descargas dos poços ao longo de 43 anos de bombeamento. Para a salinidade a validação buscou reproduzir a distribuição de sólidos totais dissolvidos medidos em 169 poços em 2009.
- A calibração e validação do modelo mostraram que há uma reprodução satisfatória dos dados observados.
- A posição da interface marinha usada no modelo foi a mais próxima possível da linha de costa (cerca de 2 km no litoral de Maceió), podendo na realidade ser mais afastada.
- Mantendo-se as descargas atuais por mais quarenta e três anos não haveria variações significativas na potenciometria, mas o avanço da cunha salina inviabilizaria o uso dos poços próximos a linha de costa de Maceió, pelo menos, aqueles distantes até cinco quilômetros.
- Além do mar, a Lagoa Mundaú é outra fonte importante de salinização, principalmente no seu flanco sul-sudeste.
- Reduzindo-se a vazão dos poços atuais pela metade haveria rebaixamentos menores nos próximos quarenta e três anos e a interface marinha ficaria próxima a linha de costa, com um pequeno avanço para o continente nas proximidades do porto de Maceió.
- É indispensável o monitoramento constante dos níveis de água, das descargas bombeadas e da qualidade da água. Esse monitoramento é a ferramenta vital para fornecer dados para se aprimorar o modelo ora proposto; sem essas informações os modelos não passarão da fase preliminar. Para o acompanhamento dos níveis e qualidade, o ideal seria uma rede de monitoramento independente, sem usar os poços de bombeamento. Poderiam ser usados os que foram desativados ou construir poços específicos para essa finalidade.
- A explotação da água subterrânea na RMM deve ser feita de forma muito bem planejada e coordenada, pois o aquífero (ou sistema aquífero) é bastante vulnerável.
- Deveria ser suspensa, em caráter provisório, a construção de novos poços, a menos de dois quilômetros da costa de Maceió e de 500 m da Lagoa do Mundaú, até que se estabeleça uma estratégia para o gerenciamento da explotação da água subterrânea na RMM. Necessariamente o desenho dessa ação passa pela aquisição de novos dados e reavaliação do modelo frente às novas informações.

12. VULNERABILIDADE NATURAL DOS AQUÍFEROS E RISCOS DE CONTAMINAÇÃO

O termo **vulnerabilidade** à poluição representa as características intrínsecas do meio natural, que são relativamente estáticas e não dependem da atividade humana. O risco pode ser definido em termos gerais como a junção de dois fatores que podem ser caracterizados separadamente: a vulnerabilidade do meio físico e a carga poluente ou evento poluente aplicado no meio subterrâneo em consequência da atividade humana. A maioria dos métodos desenvolvidos para a caracterização do risco combina na sua formulação estes dois fatores. Os riscos de contaminação das águas subterrâneas por cargas contaminantes lançadas sobre a superfície do terreno é função do grau de vulnerabilidade do sistema aquífero e do tipo, natureza e tempo de disposição deste contaminante sobre o solo.

Assumindo a sua interação, é possível ter uma vulnerabilidade elevada do meio físico e a ausência de risco de poluição se uma carga poluente não estiver presente, e viceversa. As atividades potencialmente contaminadoras das águas subterrâneas são aquelas onde ocorre o manejo de substâncias, cujas características físico-químicas, biológicas e toxicológicas podem ocasionar danos a qualidade das águas subterrâneas dos aquiferos.

Dessa forma, nem toda atividade industrial pode ser considerada como atividade potencialmente contaminadora, existindo a necessidade de serem identificados os processos produtivos e as matérias-primas utilizadas, assim como os produtos e resíduos gerados, para serem definidos quais ramos industriais podem ser enquadrados como atividade potencialmente contaminadora.

A vulnerabilidade diz respeito a maior ou menor facilidade do aquífero ser afetado por cargas contaminantes. É uma característica natural intrínseca do próprio aquífero, que depende do seu tipo, natureza litológica, condutividade hidráulica do meio insaturado, e profundidade das águas subterrâneas freáticas. Ou seja, a vulnerabilidade não pode ser modificada facilmente. A carga contaminante, por outro lado depende da atuação do homem, podendo ser controlada, e, por conseguinte influenciar nos riscos de contaminação.

O termo vulnerabilidade foi introduzido pelo hidrogeólogo francês J. Margat em 1960, e representa as características do sistema aquífero relacionadas com os fenômenos que regem a contaminação da água subterrânea; são funções das características naturais do meio aquífero em questão quais sejam: condutividade hidráulica, tempo de trânsito e capacidade de atenuação físico-bio-geoquímica. Dentre outras conceituações, é definida como a susceptibilidade de um aquífero à ação de uma determinada carga contaminante.

O êxito na avaliação da vulnerabilidade de um aquífero depende da quantidade e qualidade dos dados representativos disponíveis. O conceito fundamental de vulnerabilidade de aquíferos é que algumas áreas são mais vulneráveis a contaminação das águas subterrâneas do que outras, em função das características geológicas e hidrogeológicas. Para expor o grau de vulnerabilidade espacialmente em função das características físicas específicas (geológicas e hidrogeológicas), são confeccionados mapas de vulnerabilidade.

Dentre os métodos mais conhecidos e empregados, devido à facilidade de uso, são GOD - Foster *et al.* (1988) e DRASTIC - Aller *et al.* (1987), recomendados principalmente para caracterizações regionais, mas também usados como ferramenta de planejamento de estudos mais detalhados.

O conceito de Vulnerabilidade de um aquífero baseia-se na suposição de que o subsolo (litologia) pode promover algum grau de proteção da água subterrânea, por meio, principalmente, da inacessibilidade hidráulica à penetração de contaminantes e da capacidade de atenuação do contaminante na zona não saturada e/ou dos estratos acima da zona saturada, contra o impacto antrópico (contaminação) e natural.

Ambos os fatores interagem com os componentes da carga contaminante com respeito ao seu modo de disposição no subsolo, em particular, com a magnitude da carga hidráulica associada e classe ou tipo de contaminante, em termos de mobilidade e persistência.

A vulnerabilidade de um aquífero não pode ser alterada, pois depende exclusivamente da litologia e das características hidrogeológicas da área pesquisada.

Para delinear o grau de vulnerabilidade como função das condições hidrogeológicas são usados mapas de vulnerabilidade, que, de modo científico, representam a melhor maneira para indicar zonas potencialmente vulneráveis.

As atividades urbanas constituem fontes potenciais de contaminação para as águas subterrâneas dos aquíferos situadas sob o domínio das mesmas. Nas últimas décadas diante dos impactos gerados pelo homem, como é o caso da contaminação de águas subterrâneas por nitrato, em função da disposição de efluentes no subsolo com uso de fossas e sumidouros, tal como ocorre como a RMM. Contaminantes perigosos como é o caso de metais pesados e hidrocarbonetos podem, em função de atividades comerciais urbanas, industriais e agrícolas, comprometerem a qualidade das águas subterrâneas.

12.1. Avaliação da Vulnerabilidade dos Aquíferos

Existem várias metodologias para avaliar a vulnerabilidade de aquíferos, que se diferenciam pelas especificidades dos parâmetros utilizados nas avaliações. No presente trabalho foi utilizado o método GOD, o qual se baseia fundamentalmente em apenas três variáveis (Figura 12.1): *Groundwater occurrence* — Tipo de aquífero; *Overall Aquifer Class* — Litologia do aquífero; e *Depth* — Profundidade da água do aquífero. Trata-se de uma metodologia mais adequada para estudos de reconhecimento e avaliações regionais.

A metodologia empírica (método GOD) proposta para estimar-se a vulnerabilidade do aquífero à contaminação por Foster & Hirata (1993) envolve alguns estágios distintos:

- primeiro: identificação do tipo de confinamento de água subterrânea (aquífero livre, semi confinado e confinado), com a posterior indexação desse parâmetro (*Groundwater Confinement* G) na escala de 0,0–1,0;
- segundo: especificação dos estratos de cobertura da zona saturada do aquífero em termos de (a) grau de consolidação (e, portanto, provável presença ou ausência de permeabilidade por fissuras) e (b) tipo de litologia (e, portanto, porosidade, permeabilidade da matriz e teor de umidade da zona não saturada ou retenção específica); isto leva a uma segunda pontuação (Overlying Strata – O), numa escala de 0,4–1,0;

 terceiro: estimativa da profundidade até o aquífero (zona saturada) freático (de aquíferos não confinados) ou da profundidade do primeiro nível principal de água subterrânea (para aquíferos confinados), com posterior classificação (Depth to Groundwater – D) na escala de 0,6–1,0.

O índice final integral de vulnerabilidade do aquífero é o produto dos três índices desses parâmetros (Figura 12.1). Primeiramente seleciona-se o parâmetro G (tipo de aquífero), multiplicando-se em seguida pelo valor atribuído ao parâmetro O (litologia). O resultado desta operação será multiplicado finalmente pelo valor atribuído a D (Distância à água). Esses valores serão divididos em 5 classes a que correspondem graus de vulnerabilidade diferentes (Tabela 12.1).

O resultado do produto destes três índices é colocado em termos qualitativo em índice de vulnerabilidade: extrema; alta; média; baixa e insignificante.

Forter & Hirata *op.cit.* definem os índices de vulnerabilidade como se segue:

Vulnerabilidade insignificante ou nula - indica que não existe aquífero, quer pela ausência de água em quantidades aproveitáveis, quer pela baixa qualidade natural.

Vulnerabilidade baixa - significa que o aquífero é vulnerável a apenas compostos extremamente móveis e persistentes, como sais, nitratos e alguns solventes organosintéticos.

Vulnerabilidade média ou moderada – o aquífero é susceptível a contaminantes moderadamente móveis e persistentes, como hidrocarbonetos halogenados ou não e alguns metais pesados. Sais menos solúveis são também incluídos nesse grupo.

Vulnerabilidade alta indica aquífero vulnerável a muitos contaminantes exceto aqueles que são muito absorvíveis e/ou facilmente transformáveis.

Vulnerabilidade extrema é aplicável ao aquífero que possui sensibilidade para contaminantes degradáveis, como bactérias e vírus, sendo vulnerável a maioria dos contaminantes da água com um impacto relativamente rápido em muitos cenários de poluição.

A palavra GOD resulta da junção da primeira letra de cada parâmetro que caracteriza este índice. Na tabela 12.2 podem observar-se os valores para o parâmetro G do índice GOD; na tabela 12.3 apresentam-se os valores que podem atribuir-se ao parâmetro O e na tabela 12.4 apresentam-se os valores para o parâmetro D.

Tabela 12.1 – Índices GOD e classes de vulnerabilidade.

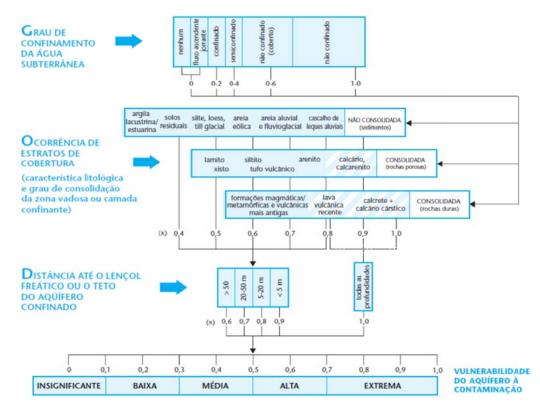
Índice GOD	Grau de vulnerabilidade	
0,7 -1,0	Extrema	
0,5 - 0,7	Alta	
0,3 – 0,5	Média ou moderada	
0,1 – 0,3	Baixa	
0,0 - 0,1	Insignificante ou nula	

Tabela 12.2 – Valores para o parâmetro G do índice GOD (Foster, 1987).

Parâmetro G (ocorrência de águas subterrâneas)	Valor
Nenhum	0,0
Confinado artesiano surgente (não drenante)	0,1
Confinado não surgente (não drenante)	0,2
Confinado drenante coberto (semi-confinado)	0,3
Confinado drenante (semi-confinado)	0,4
Não confinado coberto (freático)	0,6
Não confinado (freático)	1,0

Tabela 12.3 – Valores para o parâmetro O do índice GOD (Foster, 1987).

Parâmetro O (Classificação do material sobre o aquífero)	Valor			
Rochas não consolidadas				
Solos residuais (argila, argila siltosa, silte argiloso)	0,4			
Aluviões siltosos	0,5			
Areias eólicas	0,6			
Areias e cascalheiras aluvionares e fluviais	0,7			
Cascalheiras coluvionares	0,8			
Rochas consolidadas (Rochas Porosas)				
Argilitos	0,5			
Siltitos	0,5			
Turfos vulcânicos	0,7			
Arenitos	0,8			
Calcarios e calcarenitos	0,9			
Rochas consolidadas (Rochas densas fraturadas)				
Xistos	0,5			
Formações ígneas/metamórficas	0,6			
Lavas vulcânicas recentes	0,8			
Outros calcários	1,0			


Tabela 12.4 – Valores para o parâmetro D do índice GOD (Foster, 1987).

Parâmetro D (Profundidade ao topo do aquífero)	Valor
> 100 m	0,4
50-100 m	0,5
20-50 m	0,6
10-20 m	0,7
5-10 m	0,8
2-5 m	0,9
< 2 m	1,0

A partir do método GOD descrito anteriormente, foram definidas as classes de vulnerabilidade dos aquíferos da RMM.

A aplicação do método GOD para o sistema aquífero da RMM (quadro 7.1, apresentado no Anexo), mostra a vulnerabilidade variando de insignificante até extrema à contaminação.

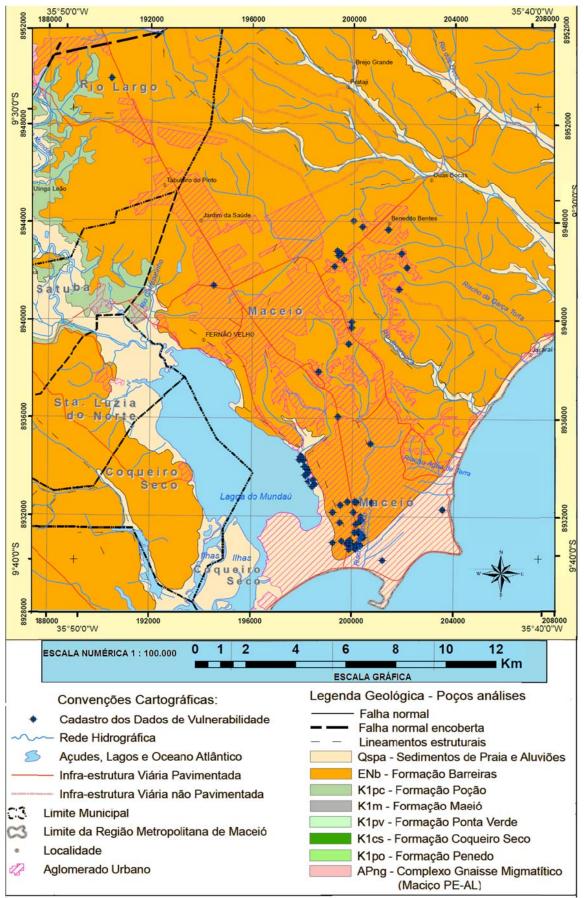
Entre os métodos para a avaliação da vulnerabilidade à poluição das águas subterrâneas que usam poucos parâmetros, o método GOD produz resultados comparáveis com os métodos mais complexos, como o DRASTIC, sendo, contudo diferente o intervalo de valores do índice de vulnerabilidade do aquífero.

Figura 12.1 - Sistema GOD para avaliação da vulnerabilidade do aquífero à contaminação (Foster *et al.*, 1988).

Dos relatórios técnicos de poços disponibilizados pela SEMARH apenas 60 poços perfurados do aquífero Barreiras no município de Maceió possuíam dados construtivos e perfil litológico – Quadro 12.1 em anexo – os quais foram utilizados, para elaboração no mapa de vulnerabilidade da região urbana de Maceió (figura 12.2).

Nos poços dos municípios da RMM circunvizinhos à Maceió não existiam nem perfil construtivo nem perfil litológico para que fossem extraídos os valores de G (Grau de confinamento das águas subterrâneas), O (Ocorrência dos extratos de cobertura) e D (Distância para o nível estático ou topo da camada confinada) como ocorreu para a área de Maceió.

Dessa maneira, foi admitido para o G o valor de 0,5 (não confinado com cobertura) de vez que o aquífero Barreiras se apresenta ora como semi-confinado (índice 0,4) e ora como não confinado com cobertura (índice 0,6).


Para o O foi considerado em toda a área o valor de 0,4 (sedimentos não consolidados predominantemene argilosos) uma vez que os solos da Formação Barreiras são areno-argilosos predominantemente dos tipos argissolos ou latossolos, as vezes misturados esses dois tipos. No estudo de solos é dito textualmente: "como na região de estudo predominam solos coesos e com textura argilosa nos horizontes subsuperficiais, a infiltração de água no solo varia, comumente, de lenta a muito lenta".

Quanto ao parâmetro D foi considerada a profundidade do nível estático, medido nos poços onde foram efetudos o nivelamento. Os valores do índice GOD para esses 27 poços perfurados no aquífero Barreiras estão também no quadro 12.1.

O aquífero Marituba deixou de ser considerado tendo em vista que todos os poços estavam acusando valores de vulnerabilidade "insignificante a nulo" o que não poderia deixar de ser tendo em vista que esse aquífero somente ocorre sob a forma de confinado a profundidades maiores de 100 m. Ocorre que, quando se considera conjuntamente o efeito da vulnerabilidade de aquíferos confinados como o Marituba e o semi-confinado a livre como o Barreiras num mesmo mapa o resultado fica falseado com predominância da classificação de "insignificante a nulo" o que não se verifica na realidade.

O tratamento a nível regional (na RMM) foi dado para o mesmo aquífero – Barreiras – entretanto na área urbana os dados dos perfis litológicos permitiram uma classificação mais realista dos distintos níveis de vulnerabilidade o que não ocorreu fora dessa área urbana.

Embora o mapa de vulnerabilidade, apresente certas limitações é uma ferramenta útil para, dentre outros aspectos. avaliar a vulnerabilidade potencial dos aquíferos em escala regional e local.

Figura 12.2 - Mapa geológico com os poços utilizados pela metodologia GOD na Região Urbana de Maceió.

Pelo quadro 12.1, apresentado no Anexo, observa-se que:

- Na região urbana do município de Maceió a vulnerabilidade do aquífero Barreiras variou entre insignificante ou nula a extrema;
- Nos demais municípios da RMM a vulnerabilidade desse mesmo aquífero predominaram vulnerabilidades entre baixa a média ou moderada.

Essa diferença não implica em mudança nas características hidrogeológicas desse aquífero mas, tão somente, à metodologia adotada para a avaliação do índice de vulnerabilidade, pois, conforme foi explanado, na região urbana de Maceió os perfis litológicos dos poços permitiram identificar situações com camadas impermeáveis dentro do aquífero que proporcionavam condições diferenciadas quanto a vulnerabilidade.

O mapa de vulnerabilidade deve constituir uma base para a emissão de alvarás (permissões ou concessões) para diferentes tipos de atividades potencialmente contaminadoras, principalmente fontes pontuais. Do mesmo modo deve servir para o planejamento de estudos de detalhe e de atividade de monitoramento da água subterrânea, bem como, para avaliações preliminares no caso de acidentes com derrames de produtos químicos no solo e subsolo da RMM.

Os mapas de vulnerabilidade da área urbana de Maceió (figura 12.3) e da RMM (figura 12.4) apresentada também em anexo tamanho A0, consideraram os poços do município de Maceió com maior segurança na avaliação e os poços dos outros municípios a partir da metodologia acima descrita.

Os estudos realizados por Elis *et al.* (2004), através da sistematização de informações geológicas, estruturais, perfis estratigráficos de poços tubulares e principalmente ensaios geofísicos de resistividade aparente (figuras 12.5, 12.6 e 12.7), confirmam a existência de camadas confinantes (argilo-arenosas) e de zonas mais condutoras, com anomalias típicas da presença de estruturas verticais a subverticais, que caracterizam as zonas de falhas normais que delimitam os blocos estruturais. O modelo geofísico aponta para a existência de aquíferos confinados na RMM, além de fornecer informações sobre a estratigrafia do local em pontos com baixa densidade de dados de poços.

De acordo com Ferreira Neto *et al.* (2002), no trabalho vulnerabilidade natural das águas subterrâneas em área do Tabuleiro do Martins – Maceió – Alagoas – BR, concluiu-se que na área estudada (figura 12.8) os sistemas aquíferos são predominantemente confinados e mais de 80% da área apresenta vulnerabilidade baixa, enquanto no restante, a vulnerabilidade é moderada.

Estes estudos na área da RMM corroboram com os resultados alcançados no presente estudo de vulnerabilidade dos aquíferos da RMM.

O Mapa de vulnerabilidade expressa a distinção de classes proposta na classificação de acordo com a metodologia GOD. É preciso entender que as quantificações de vulnerabilidade assim como as de risco à contaminação devem ser entendidas como ferramentas de apoio à gestão e como um primeiro passo na efetivação de uma adequada proteção dos aquíferos. As condições hidrogeológicas, entretanto, são muito complexas para serem abordadas em sua totalidade por qualquer mapa de vulnerabilidade.

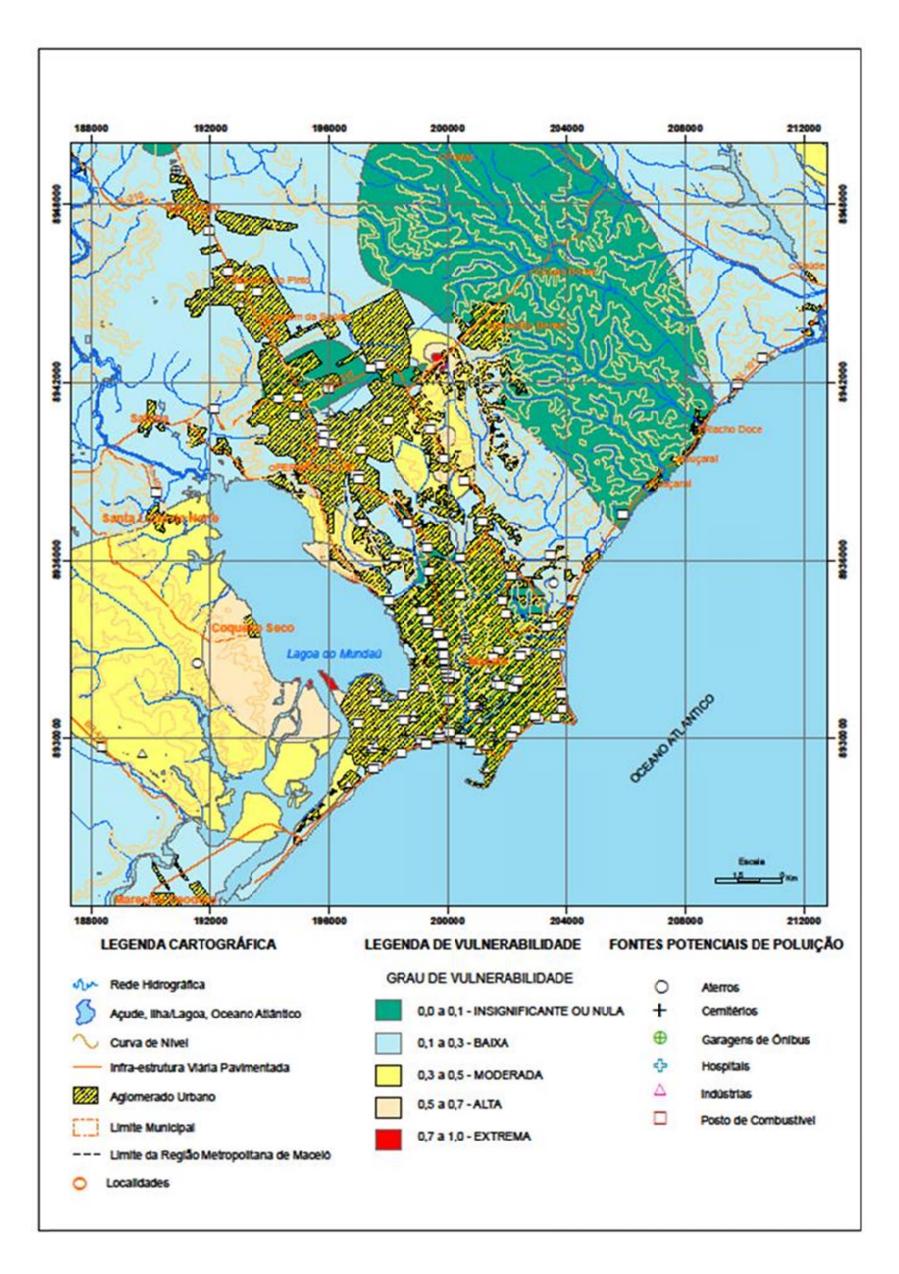


Figura 12.3 – Mapa de Vulnerabilidade com Fontes potenciais de Contaminação das águas subterrâneas na área urbana de Maceió.

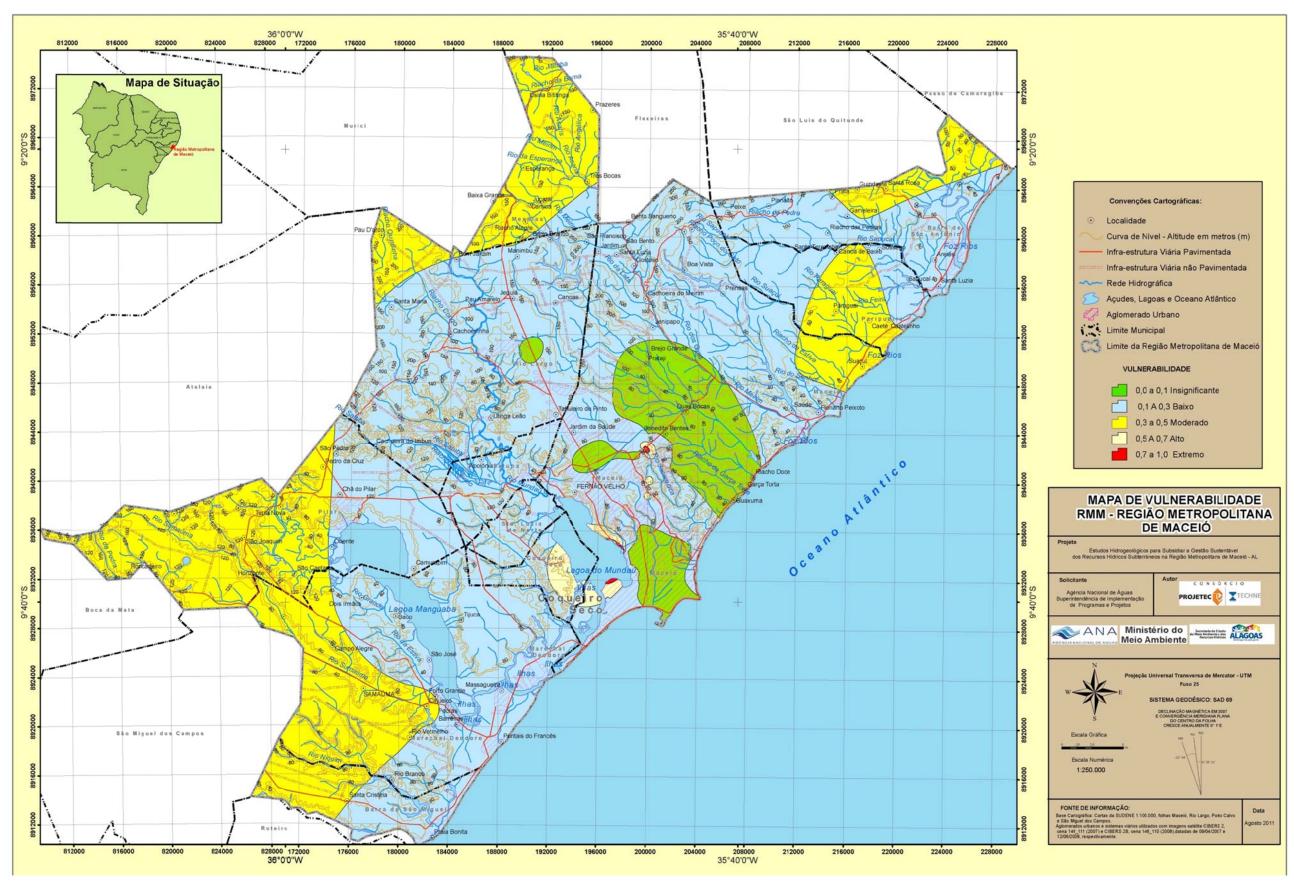


Figura 12.4 – Mapa de Vulnerabilidade do aquífero Barreiras em toda a Região Metropolitana de Maceió.

A partir dos valores dos parâmetros GOD (Grau de Confinamento da Água Subterrânea, Ocorrência de Estratos de Cobertura e Distância até o NE ou o teto do aquífero confinado) e das características hidrogeológicas da zona não saturada e/ou da camada confinante (tipo de solo, litologia, permeabilidade) e do contaminante pode ser determinada a distância percorrida e o tempo de transporte de um contaminante, assim como a duração do processo de atenuação (biodegradação, neutralização, filtração mecânica, reação química, volatilização, e dispersão) em estudo de detalhe. De um modo geral, existirá uma maior probabilidade de atenuação do contaminante à medida que a profundidade a zona saturada aumenta, manifestando-se num tempo de transporte mais longo através da zona não saturada (vadosa).

A zona não saturada desempenha um papel importante na proteção da água subterrânea, pelo seu potencial atenuador da contaminação, uma vez que essa zona constitui o primeiro meio com o qual o contaminante interage, a sua constituição e suas propriedades desempenham um papel significativo na vulnerabilidade. Na zona urbana de Maceió a profundidade da zona saturada varia entre 5 a 20 metros, mostrando-se mais próxima da superfície do terreno nas proximidades nordeste e leste da Lagoa do Mundaú (Figura 12.4), conferindo a área vulnerabilidade média a extrema do aquífero freático Barreiras. No restante da área da RMM, o aquífero Barreiras apresenta-se confinado drenante a não drenante, conferindo um grau de vulnerabilidade de insignificante a baixo, atribuídos à maior parte da área de estudo.

O cruzamento dos três parâmetros GOD supracitados permitiu definir o índice relativo de vulnerabilidade do aquífero, propriedade intrínseca deste, consistindo no grau de resistência natural do mesmo à penetração de contaminantes (Figura 12.4):

Vulnerabilidade Extrema - Corresponde àquelas áreas onde ocorrem água subterrânea explotável a uma profundidade inferior a 20 metros, subjacente ao material com elevada permeabilidade, sem nenhuma camada ou lente argilosa que retarde ou impeça a infiltração de elementos contaminantes dispostos na superfície ou subsuperfície do terreno. Esta classe situa-se na região nordeste e leste da lagoa do Mundaú no município de Maceió, representando cerca de menos de 1% da área total estudada. Apresenta extrema vulnerabilidade a muitos contaminantes, com relativo rápido impacto em muitos cenários de contaminação das águas subterrâneas.

Vulnerabilidade Alta - Corresponde àquelas áreas onde ocorrem água subterrânea explotável a uma profundidade entre 20 a 50 metros, subjacente ao material com média a elevada permeabilidade. Esta classe situa-se no entorno da classe de vulnerabilidade extrema e na região nordeste do município de Maceió (Figura 12.4). Essa região compõe-se por sedimentos arenosos e siltosos do aquífero Barreiras os quais tormam o aquifero mais vulnerável. Esta classe de vulnerabilidade representa cerca de 5% no município de Maceió. Mostra alta vulnerabilidade a muitos contaminantes, exceto aquele muito pouco móvel e pouco persistente.

Vulnerabilidade Média a Moderada - Correspondem as áreas onde ocorrem água subterrânea explotável a uma profundidade entre 20 a 50 metros, subjacente ao material com baixa a média permeabilidade. Esta classe situa-se no entorno da classe de vulnerabilidade alta no município de Maceió, não ocorrendo no restante da RMM (Figura 12.4). Essa classe chega a cerca de 10% de toda área do município de Maceió. Moderada vulnerabilidade a alguns contaminantes, mas somente quando ininterruptamente lançado na superfície ou subsuperfície do terreno.

Vulnerabilidade Baixa - Corresponde àquelas áreas onde ocorre água subterrânea explotável a uma profundidade entre 20 a 50 metros, subjacente ao material com baixa a elevada permeabilidade, com a presença de camadas e/ou lentes argilosas que retarde ou impeça a infiltração de elementos contaminantes dispostos na superfície ou subsuperfície do terreno. Corresponde às áreas mais favoráveis à captação de água subterrânea, por se encontrar mais protegida por camadas confinantes (semipermeáveis a impermeáveis) e devido a sua boa qualidade físico-química. A área dessa classe compõe-se por sedimentos arenosos e siltosos do aquífero Barreiras confinado drenante a não drenante. Esta classe predomina na RMM, representando cerca de 45% da área total estudada. Somente vulnerável a contaminantes conservativos em longo prazo, quando continuamente e amplamente lançado no subsolo.

Vulnerabilidade insignificante ou nula - Corresponde ao restante da área da RMM, onde ocorre água subterrânea explotável a uma profundidade superior a 50 metros, subjacente ao material com baixa a elevada permeabilidade, com a presença de camadas e/ou lentes argilosas que protegem as suas águas. Corresponde, juntamente com as áreas de baixa vulnerabilidade, às regiões mais favoráveis à captação de água subterrânea, devido à ausência de contaminantes e a sua boa qualidade química. A área dessa classe compõe-se por sedimentos arenosos e siltosos do aquífero Barreiras confinado não drenante. Esta classe predomina na RMM, representando cerca de 40% da área total estudada. Vulnerabilidade insignificante ou nula a contaminantes em função da presença de camadas e/ou lentes confinantes com fluxo vertical descendente não significativo.

Esse é um estudo de planejamento preliminar, que devidamente interpretado poderá ser utilizado pela sociedade e órgãos competentes como uma ferramenta do planejamento do uso e ocupação do solo, com o objetivo de preservar a qualidade ambiental das águas subterrâneas da RMM.

Vários estudos de vulnerabilidade ressaltam que os aquíferos são todos vulneráveis em algum grau e a incerteza é inerente a todas as metodologias cartográficas de vulnerabilidade das águas subterrâneas, tendo em vista a grande complexidade hidrogeológica, que faz com que cada aquifero seja heterogêneo e anisotrópico.

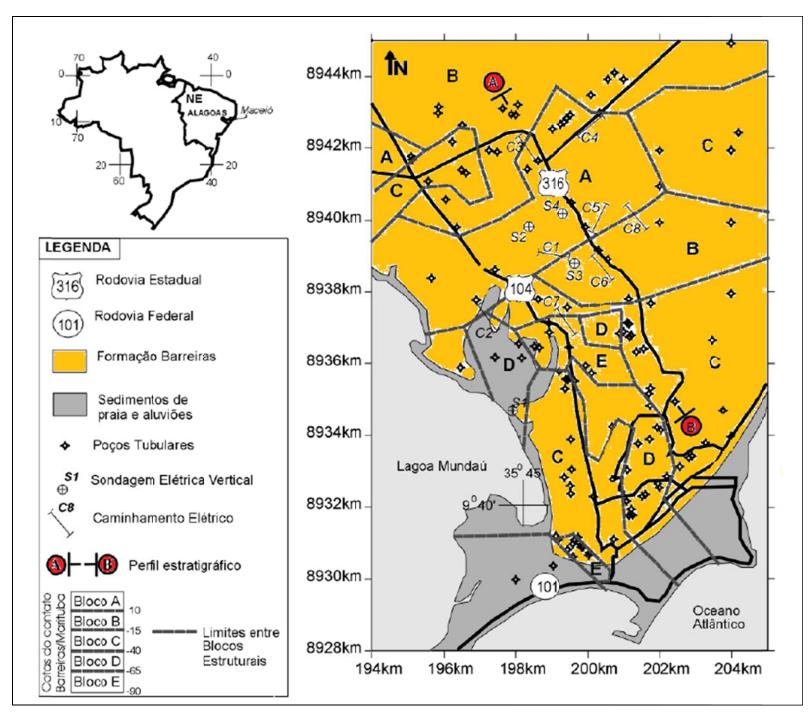


Figura 12.5 – Mapa geológico simplificado com as posições dos ensaios geofísicos e dos poços tubulares utilizados no trabalho de Elis et al. (2004).

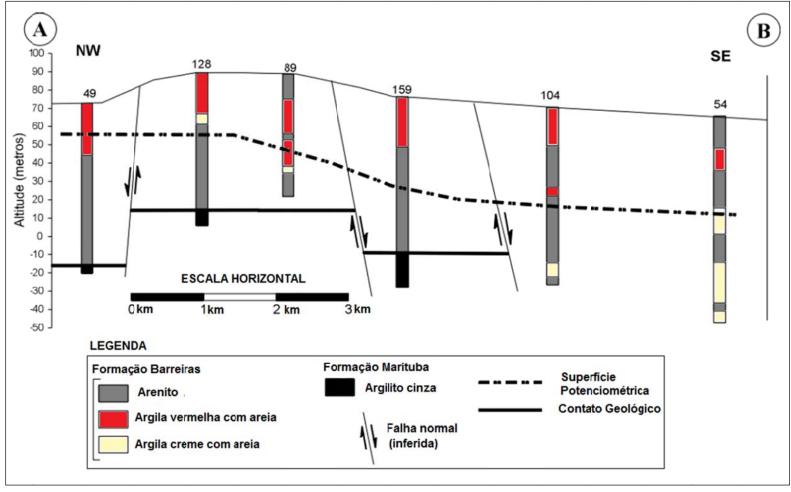


Figura 12.6 – Perfil Estratigráfico A–B, com base nos perfis de poços tubulares (Elis et al., 2004).

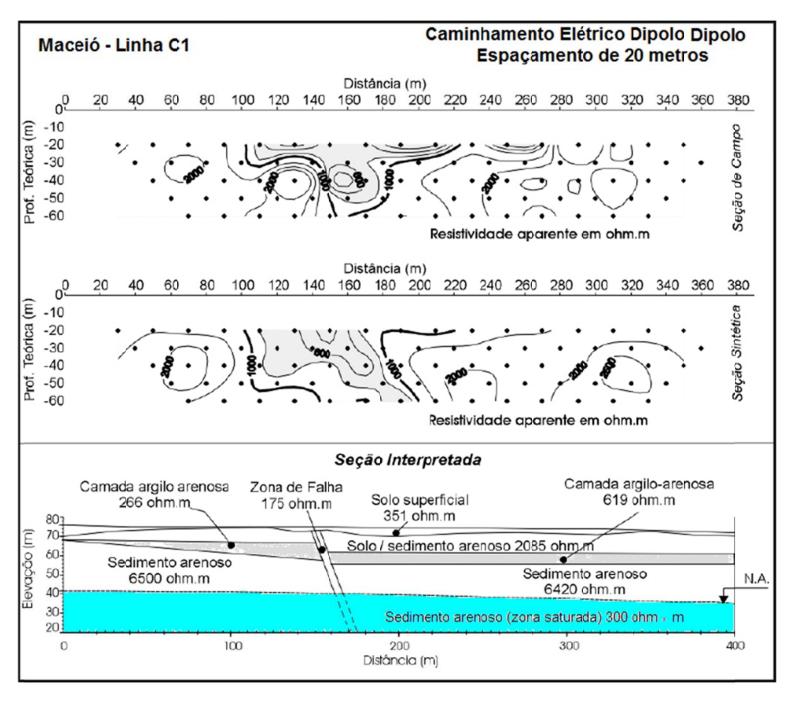


Figura 12.7 – Modelo 2D obtido por processamento dos dados do caminhamento elétrico da linha C1 (Elis et al., 2004).

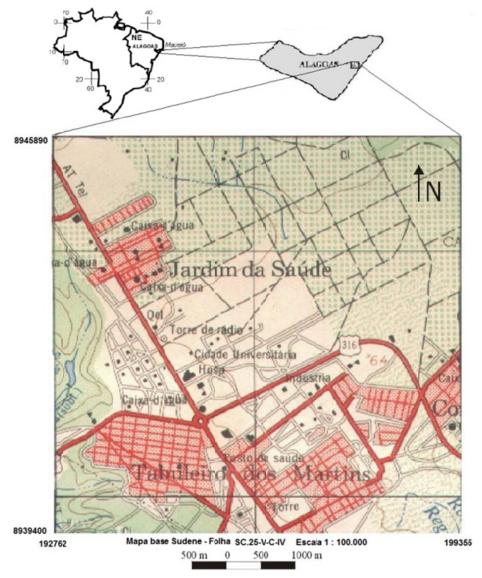


Figura 12.8 – Mapa de localização da área estudada por Ferreira Neto et al. (2002).

12.2. Caracterização da Carga Contaminante

A carga contaminante depende unicamente da ação antrópica, daí porque é mais importante a sua precisa caracterização, objetivando reduzir ou eliminar os seus efeitos adversos para o processo de contaminação do meio ambiente (água subterrânea).

As cargas contaminantes podem ser classificadas segundo os seguintes critérios:

- Modo de emissão
- Tipificação do principal contaminante
- Sobrecarga hidráulica.
- a) Segundo o modo de emissão a carga contaminante pode ser pontual, difusa ou linear.
 - A carga pontual é emitida em um ponto conhecido e bem determinado, seja em superfície ou no subsolo. Esse tipo de carga é mais facilmente detectado, podendo ser mais bem caracterizada a sua propagação tanto na zona vadosa como na saturada;
 - A carga difusa ou dispersa pode resultar da emissão de uma grande quantidade de cargas pontuais, quando também é chamada de multipontual, ou apresentar uma grande extensão por desconhecimento da localização de cargas pontuais. Um exemplo do primeiro caso é o saneamento ineficiente, onde os excrementos são infiltrados através de inúmeras fossas negras, resultando em uma grande densidade de cargas pontuais. Como segundo caso, pode ser exemplificado o vazamento da rede de esgotos, mal conservada, em vários pontos. Pela dificuldade em detectar as origens e pela extensão que podem atingir, as cargas difusas oferecem maiores problemas para serem diagnosticadas, prevenidas e remediadas;
 - A carga linear é uma particularidade da carga difusa, quando a emissão do contaminante ocorre ao longo de um determinado lineamento, como, por exemplo, na infiltração das águas de um rio influente poluído.
- b) Segundo a tipificação do principal contaminante, embora existam milhões de compostos orgânicos e inorgânicos, podem os mesmos ser agrupado segundo seus comportamentos específicos em subsuperfície nos seguintes conjuntos:
 - Nutrientes:
 - Patógenos Fecais;
 - Sais;
 - Compostos Orgânicos Sintéticos e/ou Carga Orgânica;
 - Metais Pesados.
- c) Quanto à sobrecarga hidráulica, esta pode ser reduzida ou elevada.

12.3. Principais Atividades Potencialmente Geradoras de Cargas Contaminantes e seus Tipos Contaminantes mais Comuns

Segundo Foster & Hirata (1993), diversas atividades antrópicas podem gerar carga contaminante no subsolo, do ponto de vista teórico, e para cada atividade contaminante, são estabelecidas as seguintes características associadas à carga:

- A classe de contaminante envolvida: definida pelas tendências de degradação ou biotransformação "in situ" (reações químicas ou atividade microbiana) e retardação com respeito ao fluxo de água subterrânea (principalmente troca de cátions e precipitação).
- A intensidade da contaminação: definida pela concentração relativa de cada contaminante envolvido, os padrões estabelecidos pela OMS e proporção da recarga local da água afetada pela contaminação.
- A forma de disposição no subsolo: definida pela carga hidráulica associada ao contaminante, incluindo a infiltração natural da precipitação, colocação de efluentes em superfície de baixa profundidade e lixiviação os resíduos sólidos.
- O tempo de aplicação da carga contaminante: leva-se em conta a probabilidade de disposição do contaminante no solo (exceto em acidentes ambientais), e o período que se aplica a carga.

Há diversas atividades capazes de gerar um efeito adverso nas águas subterrâneas, como pode ser visto nas tabelas 12.5 e 12.6.

Foster & Hirata (1988) sintetizaram as principais atividades potencialmente geradoras de cargas contaminantes em subsuperfície e caracterizaram as suas cargas contaminantes (tabela 12.5).

Tabela 12.5 - Principais atividades potencialmente geradoras de cargas contaminantes (Foster & Hirata, 1988).

	Característica da Carga Poluidora				
Atividade	Distribuição	Principais	Sobrecarga		
Alividade	Distribuição	Poluente	Hidráulica		
Saneamento "in situ"	P-D	nfo	+		
Vazamento de esgotos	P-L	ofn	+		
Lagoas de oxidação	Р	ofn	++		
Aplicação de águas residuais em superfície	P-D	nsof	+		
Rios e canais de recreação	P-L	nof	++		
Lixiviados de lixões/aterros sanitários	Р	osm	-		
Tanques de combustíveis	P-D	0	-		
Drenos de rodovias	P-D	so	+		
Vazamento de tanques/tubos industriais	P-D	om	-		
Derramamento acidental	P-D	om	+		
Lagoas de efluentes industriais	Р	oms	++		
Lançamento de efluentes em superfície	P-D	oms	+		

Tabela 12.5 - Principais atividades potencialmente geradoras de cargas contaminantes (Foster & Hirata, 1988) (continuação).

Carac					Característi	cterística da Carga Poluidora				
	Atividade			Distribuição	Principais Poluente	Sobrecarga Hidráulica				
Canai	s e rios recept	ores			P-L	oms	++			
Lixiviados de resíduos sólidos			P oms		-					
Dreno	s de pátios				Р	oms	++			
Mater	ial em suspen	são de (gases		D	so	ı			
Leg	jenda: P=	Pontu	ıal; L	.= l	₋inear;	D =	Difuso;			
N=	nutrientes;	f =	patógen	os feca	is; o	= comp	ostos fecais;			
s =	sais;	m =	metais p	esados	3;					
+ =	reduzida;	++	= e	elevada						

Tabela 12.6 – Atividades potencialmente geradoras de cargas contaminantes e seus tipos contaminantes mais comuns.

Fontes de Cargas Contaminantes	Tipos de contaminantes
Atividade Agrícola	Nitratos, amônia, pesticida e organismos fecais
Saneamento in situ	Nitratos, hidrocarbonetos alogenados, microrganismos
Postos de combustível e garagens	Hidrocarbonetos aromáticos, benzeno, fenóis, hidrocarbonetos alogenados
Disposição inadequada de resíduos sólidos	Amônia, salinidade, hidrocarbonetos alogenados, metais pesados
Indústria metal-mecânica	Tricloroetileno, tetracloroetileno, hidrocarbonetos alogenados, fenóis, metais pesados e cianetos
Indústrias de tintas e solventes	Benzenos, hidrocarbonetos alogenados, metais, hidrocarbonetos aromáticos, tetracloroetileno
Indústria madeireira	Pentaclorofenol, hidrocarbonetos aromáticos e hidrocarbonetos alogenados
Lavanderias	Tricloroetileno, tetracloroetileno
Indústria química (pesticidas)	Hidrocarbonetos alogenados, fenóis, arsênio

Tabela 12.6 – Atividades potencialmente geradoras de cargas contaminantes e – seus tipos contaminantes mais comuns (continuação).

Fontes de Cargas Contaminantes	Tipos de contaminantes
Disposição de lodos	Nitratos, Hidrocarbonetos alogenados, chumbo, zinco
Curtumes	Cromo, Hidrocarbonetos alogenados, fenóis
Exploração de óleo e gás	Salinidade, Hidrocarbonetos aromáticos
Mineração de metais e carvão	Acidez, metais pesados, ferro e sulfatos

Fonte: Groundwater Quality Protection, Foster et al. (2002), modificado.

Nota-se nessas classificações de atividades potencialmente geradoras de cargas contaminantes a omissão de algumas atividades que ocorrem na RMM, que podem gerar cargas contaminantes significativas. Assim sendo, os cemitérios e as atividades hospitalares não estão incluídos nessa classificação.

Analisando a tabela 12.5 e identificando as atividades que realmente ocorrem na RMM e incluindo aquelas não abordadas, podemos sintetizar como principais atividades geradoras de cargas contaminantes na área estudada as seguintes:

- Postos de Combustíveis (tanques de combustíveis);
- Cemitérios;
- Hospitais;
- Lixões e aterros (Depósitos de resíduos sólidos);
- Indústrias;
- Garagem de ônibus;
- Saneamento "in situ" e vazamentos da rede de esgotos;
- Atividade Agrícola.

Comentaremos a seguir as principais atividades geradoras de cargas contaminantes na área estudada:

1. Postos de Combustíveis (tanques de combustíveis)

O vazamento de combustíveis das mais variadas naturezas é um dos mais graves problemas ambientais do mundo nas últimas duas décadas. Na RMM foram localizados diversos postos de combustíveis (124), conforme quadro 12.2.

O vazamento de combustíveis pode ocorrer em qualquer instalação de armazenamento desses produtos, entre os quais se destacam postos de combustíveis, tanques de armazenamento de combustíveis empresas de transporte rodoviário e ferroviário, indústrias e aeroportos.

Essa grande diversificação de atividades que armazenam combustíveis é responsável pelo maior problema do Brasil no controle de vazamentos, que é o desconhecimento pelos órgãos fiscalizadores do número exato de tanques que armazenam esses produtos, bem como de sua condição de estangueidade.

Os postos de gasolina são responsáveis por um grande número de casos de contaminação da água subterrânea (Fetter, 1988), embora os incidentes isolados sejam de pequenas dimensões.

Essas instalações armazenam os hidrocarbonetos potencialmente contaminantes em tanques subterrâneos que não permitem inspeções visuais para verificar possíveis vazamentos. As principais causas da contaminação das águas subterrâneas por postos de combustíveis são os tanques corroídos, e há uma forte correlação entre a incidência e o tamanho dos vazamentos e a idade dos tanques instalados (Kostecki & Calabrese, 1989; Cheremisinoff, 1992). Existe uma grande probabilidade de que tanques com mais de 20 anos estejam bastante corroídos e sujeitos a vazamentos substanciais, a menos que recebam manutenção regular. Além disso, as tubulações que ligam os tanques às bombas podem romper-se devido ao tráfico de veículos pesados ou à baixa qualidade da instalação.

Esse problema não é privilégio do Brasil, pois uma referência da EPA (*United States Environmental Protection Agency* – Agência de Proteção Ambiental dos Estados Unidos) em 1992 (Guiger, 2000) revela que, de 2.087.484 tanques subterrâneos de combustíveis nos EUA, 25% não estavam regulamentados. No Brasil o problema é maior, pois o número total desses tanques é completamente desconhecido.

Também é muito diferente a situação referente ao conhecimento de vazamentos no exterior e no Brasil. Segundo Guiger (2000), mais de 180.000 vazamentos em instalações de tanques foram confirmados nos EUA, até aquela presente data, e é esperado que esse número tenha aumentado muito. Guardadas as mesmas proporções, é possível esperar que hoje existam no Brasil mais de 100.000 vazamentos em tanques de armazenamentos, porém os números conhecidos são irrisórios. O Estado de São Paulo, que mais tem pesquisado e controlado esse problema, detectou 328 vazamentos no período 1984-2001 (CETESB, *in* Brandt, 2001).

Esses números, longe de revelarem uma situação tranquilizadora para nossas águas subterrâneas, apontam a falta de condições órgãos competentes para promover um controle efetivo desse deplorável tipo de contaminação do meio ambiente.

As causas de tais vazamentos são inúmeras, porém na maior parte dos casos são decorrentes de:

- Vazamentos no sistema, devido à corrosão;
- Falhas estruturais do tanque ou da tubulação conectada ao tanque;
- Instalação inadequada;
- Derramamento durante a operação de descarregamento do combustível para o tanque.

No Estado de São Paulo dos 328 acidentes constatados, as causas foram às seguintes:

- vazamento do tanque e tubulações por corrosão, trinca ou quebra: 82,7 %
- falha humana na operação, carregamento ou manutenção: 15,2 %
- choque/acidente com veículos: 1,8 %
- raios ou chuvas intensas: 0,3 %

Considerando que a corrosão nos tanques é comprovadamente a principal causa, pode-se avaliar quantos vazamentos desconhecidos ocorrem no Brasil, principalmente em locais onde há tanques com mais de 20 anos de uso, construídos sem os mínimos

cuidados que hoje são adotados contra a corrosão e que não são alvos de qualquer controle pelos órgãos ambientais existentes.

A idade dos tanques está diretamente relacionada à probabilidade da ocorrência de um vazamento, nos Estados Unidos, a experiência tem mostrado que a vida média de um tanque subterrâneo é de aproximadamente 20 anos e as chances de ocorrer vazamentos aumentam significantemente após os 10 anos de utilização.

De todos os constituintes dos diversos combustíveis, os que apresentam maior toxidade são os compostos aromáticos, principalmente os leves da série BTEX (benzeno, tolueno, etilbenzeno e xileno), estes não detectados na área da RMM em poços de captação de água subterrâneas.

Esses compostos são poderosos depressores do sistema nervoso central, apresentando toxidade crônica mesmo em pequenas concentrações.

O benzeno é o mais tóxico dessa série, por ser comprovadamente cancerígeno se ingerido mesmo em baixas concentrações durante período de tempo não muito longo. Um total de 20 ppb inalado pode causar a morte de uma pessoa em poucos minutos, no entanto, sua concentração dissolvida em água pode chegar a 30.000 ppb (Oliveira et al., 1998).

A inalação de 0,05 ppb de benzeno durante alguns anos pode causar anemia e leucopenia, e por longo tempo evoluir para uma leucemia.

O tolueno ataca principalmente o sistema nervoso central, causando dores de cabeça, fadiga, sonolência e perda de coordenação, podendo ser fatal em alguns casos de exposição por inalação, pois impede uma respiração adequada.

O xileno causa náuseas, vômitos, irritação do nariz e da garganta, quando inalado, e irritação e escamação da pele quando em contato dermal.

O etilbenzeno pode causar irritação nos olhos e garganta.

Em termos ambientais, são também os aromáticos leves que provocam maiores impactos, pois suas características de solubilidade, viscosidade e volatilidade conferem a esses compostos uma elevada mobilidade, facilitando seu acesso até a zona saturada. A maior quantidade desses compostos na gasolina que no diesel, confere ao primeiro maior potencialidade como contaminante das águas subterrâneas.

Quando ocorre um vazamento de combustível, na maior parte das vezes a partir de um tanque que o armazena em subsuperfície, os hidrocarbonetos que o compõem em fase líquida vão migrar em função das forças de gravidade e capilar, pelo que predomina o fluxo descendente na vertical.

Ao encontrar horizontes do solo com condutividade hidráulica baixa, como as argilas, esse fluxo encontra resistência, provocando um espalhamento da fase líquida desse combustível, que irá formar lentes de combustível concentrado. Essas lentes vão formar a fase líquida livre do combustível na zona vadosa.

Por descontinuidade do horizonte mais impermeável ou pela carga hidráulica representada pelo depósito dessa fase livre, sempre ocorre um "vazamento" a partir desse horizonte, continuando o combustível a migrar descendentemente até ser novamente interceptado por outro horizonte de condutividade hidráulica mais baixa, quando vai formar nova fase líquida livre.

Esse processo pode ficar restrito à zona vadosa em duas situações: quando se detecta a sua ocorrência no início do processo, podendo-se evitar que sua continuidade atinja a zona saturada; ou quando a zona vadosa é muito espessa e o vazamento é pequeno, sendo então possível que os hidrocarbonetos sejam retardados e/ou eliminados pelos processos de atenuação que podem ocorrer nessa zona.

Caso não ocorra uma dessas situações, a fase líquida continuará migrando descendentemente até atingir a franja capilar da zona saturada. Sendo os hidrocarbonetos menos densos que a água, será formada no topo do aquífero uma nova fase líquida livre, que tenderá a mover-se lentamente segundo os processos de advecção ou de dispersão hidrodinâmica, acompanhando o movimento da água subterrânea.

A área ocupada pela fase livre é denominada de pluma, tanto localizada na zona vadosa quanto na zona saturada, e tenderá a crescer, geralmente de forma elíptica, em função da inclinação do nível freático (quanto maior for o gradiente hidráulico mais estreita será a elipse). A velocidade dessa movimentação pode variar significativamente, dependendo de fatores como a velocidade do fluxo da água subterrânea, o volume do vazamento que chega ao aquífero e a condutividade hidráulica do aquífero, que pode assumir valores elevados e aleatórios no caso de aquíferos fissurais. Em geral, essa velocidade varia entre 5 m/ano e 50 m/ano, mas pode extrapolar muito esses limites.

No movimento migratório descendente, desde o tanque até atingir o aquífero, parte da fase líquida livre fica retida nos poros pelo efeito das forças capilares e de adsorção, principalmente em presença da argila. O material assim adsorvido vai formar a fase líquida residual, também denominada de fase adsorvida.

Levando em consideração as pequenas áreas geralmente afetadas e a forte atenuação natural dos compostos de hidrocarbonetos no subsolo, a simples presença de postos de gasolina ou de instalações para armazenagem com tanques subterrâneos deve ser classificada como uma fonte moderada de carga contaminante no subsolo, a menos que seja evidente a implantação de projeto com elevado padrão e manutenção regular das instalações. Há perigo adicional nos casos em que os postos de gasolina estão associados a oficinas de conserto de veículos, que utilizam grandes quantidades de solventes orgânicos sintéticos e lubrificantes a base de hidrocarbonetos, pois estes podem ser despejados no solo sem controle.

2. Indústrias

A poluição industrial tem constituído um dos maiores problemas associados ao desenvolvimento de todos os países do mundo e isso se deve principalmente a dois fatores:

- A grande diversidade de produtos químicos com elevada concentração de tóxicos que são manuseados nessas indústrias.
- A grande quantidade de efluentes gerados seja gás, líquidos ou na forma de resíduos sólidos.

Esses efluentes contaminam os corpos d'água superficiais, através do escoamento superficial, bem como as águas subterrâneas, através de sua infiltração no subsolo.

Há, contudo, uma extrema dificuldade em estimar a carga poluidora em função das variadas formas com que tais cargas são lançadas nos diferentes corpos hídricos.

A poluição industrial inicia-se na atmosfera, podendo gerar chuva ácida que irá escoar na superfície do solo em direção aos rios, lagos e reservatórios ou se infiltrar para atingir os aquíferos; passa pelos depósitos de matéria prima e de resíduos sólidos armazenados nos pátios das indústrias, que podem ser lixiviados pelas águas superficiais, tomando os mesmos destinos acima referidos para as chuvas ácidas; e, finalmente, terminam nos efluentes líquidos que podem ser lançadas em lagoas de decantação, nem sempre bem impermeabilizadas, propiciando sua infiltração no subsolo, ou ainda serem lançados clandestinamente na rede de águas pluviais ou na galeria de esgotos, direcionando a sua infiltração e dificultando sua detecção.

A quantificação dessas variadas formas de contaminação é extremamente difícil, pois envolve a toxidez do produto, a forma de disposição, a segurança no transporte interno e a proteção ambiental adotada pelo empreendimento.

Geralmente estima-se o volume efluente a partir da quantidade de água utilizada no processo industrial, mas é difícil estabelecer dessa quantidade a fração infiltrada no subsolo. Mais difícil ainda é saber a quantidade lixiviada e infiltrada a partir de uma pilha de resíduos sólidos ou depósito de matéria prima.

Há diversas atividades industriais capazes de gerar um efeito adverso nas águas subterrâneas, como pode ser visto na tabela 12.7.

Tabela 12.7 – Fontes de contaminação e seus tipos contaminantes mais comuns.

Fontes de Contaminação	Tipos de contaminantes
Indústria metal-mecânica	Tricloroetileno,tetracloroetileno, hidrocarbonetos alogenados, fenóis, metais pesados e cianetos
Indústrias de tintas e solventes	Benzenos, hidrocarbonetos alogenados, metais, hidrocarbonetos aromáticos, tetracloroetileno
Indústria madeireira	Pentaclorofenol, hidrocarbonetos aromáticos e hidrocarbonetos alogenados
Lavanderias	Tricloroetileno, tetracloroetileno
Indústria química (pesticidas)	Hidrocarbonetos alogenados, fenóis, arsênio
Curtumes	Cromo, Hidrocarbonetos alogenados, fenóis
Indústria de exploração de óleo e gás	Salinidade, Hidrocarbonetos aromáticos
Indústria de mineração de metais e carvão	Acidez, metais pesados, ferro e sulfatos

Fonte: "Groundwater Quality Protection", Foster et al. (2002), modificado.

A tabela 12.8 mostra uma síntese das principais características químicas e dos índices de risco para atividades industriais mais comuns.

Tabela 12.8 - Resumo das características químicas e índices de risco para atividades industriais comuns.

Tipo Industrial	Índice de Risco Mazurek (1-9)	Uso relativo da Água	Carga de Salinidade	Carga de Nutrientes	Carga Orgânica	Hidrocarbonetos	Patógenos Fecais	Metais Pesados	Orgânico Sintético	Índice de Poluição
Ferro e Aço	6	••	•	•	••	••	•	••	••	2
Processamento de Metal	8	•	•	•	•	•	•	•••	•••	3

Tabela 12.8 - Resumo das características químicas e índices de risco para atividades industriais comuns. (continuação).

Tipo Industrial	Índice de Risco Mazurek (1-9)	Uso relativo da Água	Carga de Salinidade	Carga de Nutrientes	Carga Orgânica	Hidrocarbonetos	Patógenos Fecais	Metais Pesados	Orgânico Sintético	Índice de Poluição
Engenharia Mecânica	5-8	•	•	•	•	•••	•	•••	••	3
Metais Não-Ferrosos	7	•	•	•	•	•	•	•••	•	2
Minerais Não-Metálicos	3-4	•	•••	•	•	•	•	•	•	1
Refinarias de Gás e Petróleo	7-8	•	•	••	•••	•••	•	•	••	3
Produtos Plásticos	6-8	••	•••	•	••	••	•	•	•••	3
Artefatos de Borracha	4-6	•	••	•	••	•	•	•	••	2
Produtos Químicos Orgânicos	3-9	••	••	•	••	•••	••	••	•••	3
Produtos Químicos Inorgânicos	6-9	••	••	•	•	•	•	•••	•	3
Farmacêuticos	6-9	•••	•••	••	•••	•	••	•	•••	3
Madeira	2-4	•	••	•	••	•	•	•	••	1
Papel e Celulose	6	•••	•	••	••	•	•	•	••	2
Sabão e Detergentes	4-6	••	••	•	••	••	••	•	•	2
Têxteis	6	•••	••	••	•••	•	•	•	••	2
Curtume	3-8	••	•••	••	••	•	•	••	•••	3
Alimentos e Bebidas	2-4	••	••	•••	•••	•	•••	•	•	1
Pesticidas	5-9	••	••	•	•	•	•	•	•••	3
Fertilizantes	7-8	•	•••	•••	•	••	•	•	••	2
Açúcar e Álcool	2-4	••	•••	•••	•••	••	•	•	•	2
Usina Termoelétrica	-	•••	•	•	•	•••	•	•••	••	2
Elétricos e Eletrônicos	5-8	•	•	•	•	•••	•	••	•••	3

Legenda:

Probabilidade de concentrações problemáticas de efluentes e/ou líquidos

reduzida
 ● moderada
 ● elevada

Fonte: Groundwater Quality Protection: A Guide for Water Service Companies, Municipal Authorities and Environment Agencies – World Bank, 2006.

Por outro lado, a possibilidade de contaminação das águas subterrâneas a partir da infiltração desses efluentes nem sempre é proporcional ao porte do empreendimento ou ao grau de toxidade do produto manipulado, pois geralmente as maiores empresas utilizam também processos de controle e monitoramento mais eficientes, o mesmo ocorrendo quando é mais perigoso o produto manuseado. Ainda assim, deve-se considerar o perigo de acidentes no armazenamento ou no transporte de substâncias perigosas, por maiores que sejam os cuidados.

Face ao exposto, o correto é considerar o conceito de *atividade potencialmente poluidora* não apenas para as denominadas "indústrias sujas", onde o controle ambiental deixa muito a desejar, mas também para aquelas que, apesar de disporem de bons sistemas de tratamento, manuseiam substâncias perigosas. Na área estudada foram cadastradas 22 indústrias conforme quadro 12.2 e tabela 12.9 foram relacionadas as empresas do Distrito Industrial Governador Luiz Cavalcante na RMM e seus efluentes líquidos gerados.

Finalmente, deve ser considerado como agravante no problema da contaminação industrial as águas subterrâneas, o despreparo de grande parte dos órgãos ambientais estaduais para esse tipo de contaminação, pois a maior experiência sobre contaminação hídrica no Brasil refere-se às diversas possibilidades de poluição aos recursos hídricos superficiais, sendo muito pouco conhecido e controlado quando o problema é relacionado com as águas subterrâneas.

Tabela 12.9 – Caracterização das Empresas do Distrito Industrial Governador Luiz Cavalcante na RMM.

Idoutificação	A 4 in si al a al a	Nº de	Efluentes	Disposição	
Identificação	Atividade	Emp.	Fonte	Tratamento	Final
Companhia Alagoana de Refrigerantes (Coca-Cola)	Fabricação de refrigerantes	440	Lavagem de frascos e equipamentos (500 m³/dia)	DesarenadorLagoaanaeróbicaLagoafacultativa	Lagoa 1 Distrito Industrial
Introsuc – Indústria Tropical de Sucos S.A.	Fabricação de sucos e concentrados de frutos	36	Lavagem de frutas (20 m³/h)	Lagoas de estabilização funcionando como lagoas de infiltração	Infiltração no solo
AFC Com. e Rep. Ltda. (Adubo Superfértil)	Preparação de adubos fertilizantes	40	Lavagem de esteiras e equipamentos	Drenagem direta para a Lagoa 2 do Distrito Industrial, sem tratamento	Lagoa 2 Distrito Industrial
Ibratin Nordeste Ltda.	Fabricação de tintas	37	Lavagem de máquinas (1 m³/h)	Coagulação com sulfato de alumínio, seguido de decantação	Reutilização do efluente não decantado
Kiola Indústria e Comércio Ltda.	Fabricação de produtos domisanitários	10	Limpeza da fábrica (resíduo de detergente)	-	Infiltração no solo através de 2 sumidouros
Supermix Concreto S.A.	Concretagem	12	Lavagem do carro Transportador de concreto	02 caixas de decantação	Crenagem natural do terreno
IFRIL – Indústria de Frios e Pesca Ltda.	Beneficiamento de peixes e crustáceos	60	Água usada no beneficiamento	Lagoas	Não há informação
LIFAL – Laboratório Farmacêutico de Alagoas	Fabricação de produtos farmacêuticos	179	Esgotos sanitários e efluentes industriais	Fossa / sumidouros Tanque de coleta / infiltração	Infiltração no solo

Fonte: V & S Engenheiros Consultores S/C (1998).

Observa-se assim, que o problema da contaminação das águas subterrâneas a partir da atividade industrial, além de grave é muito difícil de ser avaliado, em parte devido à complexidade do próprio processo, e em parte pelas deficiências dos órgãos públicos responsáveis pelo controle dos efeitos danosos desse tipo de poluição.

A metodologia inicial para pesquisar a poluição industrial é proceder a uma inspeção *in loco* de todas as indústrias cadastradas, levantando todas as suas características operacionais, incluindo os aspectos direto ou indiretamente relacionados com eventuais impactos ao meio ambiente.

Os principais parâmetros a serem considerados na análise da poluição industrial são:

- área ocupada pela indústria
- existência e tipo de tratamento de efluente
- volume e características dos efluentes líquidos gerados
- destino dos efluentes líquidos gerados
- volume e características dos resíduos sólidos gerados
- destino do resíduo sólido gerado
- substâncias poluentes geradas

Os poluentes industriais podem classificados em função dos efluentes gerados:

- Efluentes Líquidos
 - Poluentes orgânicos e sólidos:
 - DBO₅ (Demanda Bioquímica de Oxigênio)
 - DQO (Demanda Química de Oxigênio)
 - Sólidos em suspensão
 - Poluentes em metais pesados tóxicos:
 - As, Cr, Pb, Cu, Cd, Hg, Ni, Ag, Sr, Zn e Sn
 - Outros poluentes:
 - Fenóis, fósforo, sulfatos e cianetos.
- Resíduos Sólidos

Classificados segundo a NBR 10.004/2004, elaborada no âmbito da Associação Brasileira de Normas Técnicas (ABNT) em substituição à NBR 10.004/87 em:

- Classe I Perigosos são aqueles que apresentam periculosidade em função de excederem os padrões da ABNT em relação à: inflamabilidade, corrosividade, reatividade, toxicidade e patogenicidade.
- Classe II Não perigosos são aqueles que não apresentam periculosidade, sendo subdivididos em: Não inertes e Inerte.

Periculosidade de um resíduo: Característica apresentada por um resíduo que, em função de suas propriedades físicas, químicas ou infecto-contagiosas, pode apresentar:

- a) risco à saúde pública, provocando mortalidade, incidência de doenças ou acentuando seus índices:
- b) riscos ao meio ambiente, quando o resíduo for gerenciado de forma inadequada.

3. Lixões e aterros (Depósitos de resíduos sólidos)

Segundo a NBR 10.004 (ABNT, 2004), os resíduos sólidos urbanos podem ser definidos como, resíduos no estado sólido e semi-sólido, que resultam da atividade da comunidade de origem: industrial, doméstica, hospitalar, comercial, agrícola de serviços e varrição. Ficam incluídos nestas definições os lodos provenientes de sistemas de tratamento de água, aqueles gerados em equipamentos e instalações de controle de poluição, bem como determinados líquidos cujas particularidades tornem inviável o seu lançamento na rede pública de esgoto ou corpos de água, ou exijam para isto soluções técnicas e economicamente inviáveis em face da melhor tecnologia disponível.

Define-se lixão como sendo o lançamento de resíduos no solo sem o emprego de técnicas de engenharia, expondo a massa de resíduos aos fenômenos da natureza, podendo comprometer o meio ambiente e a saúde publica pela contaminação do solo, água e ar.

O tratamento e a destinação final adequada de resíduos sólidos urbanos é responsabilidade das Prefeituras conforme define a constituição representada pela lei orgânica dos municípios, sendo considerado também um serviço essencial, integrando-se com os outros serviços de coleta e transporte desses resíduos.

Outra característica marcante deste tipo de destinação final de resíduos, esta ligada a proliferação de vetores, geração de maus odores, contaminação das águas superficiais e subterrâneas causada pelo chorume (lixiviado) gerado pela degradação da matéria orgânica, com a água da chuva nos lixões, principalmente por conta dos resíduos estarem em contato direto com o solo sem nenhum tipo impermeabilização ou cobertura favorecendo os processos de lixiviação das águas pluviais.

Finalmente, as localizações desses lixões, não são compatíveis com as leis de uso e ocupação do solo ou com a legislação ambiental vigente, geralmente posicionado em áreas de fundo de vale ou de preservação permanente.

Defini-se aterro sanitário como sendo a técnica de tratamento de resíduos confinados no solo através do emprego de normas especificas de engenharia a qual tem a finalidade de preservar o meio ambiente e saúde publica, invariavelmente localizado em áreas devidamente projetadas e adaptadas para receber resíduos sendo compatível com a legislação ambiental.

A técnica de aterro sanitário se caracteriza, dentre outras coisas, por proporcionar um confinamento seguro dos resíduos apresentando também um nível de complexidade que exige a atuação de equipes multiprofissionais tanto na sua fase de implantação como na sua fase operacional e em especial na fase de localização e licenciamento.

Diferentemente do lixão, o aterro sanitário apresenta critérios rigorosos quanto a sua localização, devendo passar necessariamente por estudos específicos antes de sua aprovação final, recomendando-se para uma área ideal as seguintes características:

- a) Distâncias Mínimas.
 - Núcleos residenciais 500 m.
 - Corpos Hídricos 200 m.
 - Aeroportos 20 km.
 - Lencol Freático 3 m.
 - Área de Geração dos Resíduos 15 km.
- b) Solo argiloso com no mínimo 25%.
- c) Disponibilidade de Solo para Cobertura.
- d) Vegetação Rasteira ou de Pequeno Porte.

- e) Vida Útil de no Mínimo 15 anos.
- f) Zoneamento Ambiental Compatível.

A quantidade de resíduos sólidos gerados por habitante/dia varia de local para local e até mesmo com a época do ano, mas em média assume-se que 0,7 kg/habitante/dia são gerados no Brasil. A composição física (composição qualitativa) dos resíduos sólidos é constituído por porcentagens de matéria orgânica, papel, papelão, trapos, couro, plásticos diversos, metais ferrosos, metais não ferrosos, vidro, borracha, madeira e outros.

Já a composição química dos resíduos sólidos está relacionada, principalmente, aos componentes orgânicos deste e engloba, principalmente, a qualificação de variáveis como carbono, nitrogênio, fósforo, potássio, cálcio, magnésio, cobre, zinco, ferro, manganês, sódio e enxofre.

O principal contaminante de água subterrânea gerado em um aterro é o lixiviado. Suas características físico-químicas evoluem com o tempo, ou seja, sua carga ambiental modifica-se de maneira bastante sensível devido ao líquido resultante das atividades da dissolução de matéria orgânica pelas enzimas microbianas, entrarem em contato com a água da chuva ou outras infiltrações, percolando pelo interior da massa de resíduos, lixiviando diversos compostos. O lixiviado é constituído basicamente por água rica em sais, metais tóxicos e matéria orgânica, podendo a concentração dessa última chegar a níveis de até cem vezes o valor da concentração de matéria orgânica em esgotos domésticos.

Segundo Barbosa *et al.* (2000), a percolação desse efluente tem como consequência a contaminação de mananciais de águas subterrâneas, lagoas e o solo. Pode conter os seguintes tipos de contaminantes potenciais:

- a) matéria orgânica dissolvida: medida pela demanda química em oxigênio (DQO) e pela demanda biológica de oxigênio (DBO), ou pelo carbono orgânico total (COT), incluindo o metano, os ácidos graxos voláteis (AGV) e outras combinações orgânicas;
- b) componentes orgânicos antrópicos (COA): hidrocarbonetos aromáticos, fenóis, compostos alifáticos clorados, entre outros;
- c) cátions: Fe, Mn, Ca, Mg, Na, K, N, NH₄, Cu e Zn;
- d) ânions: HCO₃ -, Cl⁻, SO₄²⁻.

Os compostos solúveis dissolvidos, em particular os contaminantes, são transportados pela água de infiltração das zonas não saturadas (vadosas) até as zonas saturadas. O fluxo dos contaminantes, quando estes estão dispostos no solo, atravessa os diferentes horizontes não saturados e a zona capilar, atingindo a zona saturada. A zona não saturada, cujos poros são preenchidos por água e ar, o movimento da água (infiltração) depende das forças da gravidade e da permeabilidade do solo, já na zona saturada os poros são totalmente preenchidos por água, e o fluxo é dependente do gradiente hidráulico e os contaminantes podem forma plumas de contaminação com diferentes concentrações de contaminantes (Pastore & Fortes, 1998).

Metais tóxicos como chumbo, mercúrio, cádmio, arsênio, cromo, zinco e manganês, dentre outros, estão presentes em diversos tipos de resíduos levados para lixões, aterros controlados e sanitários municipais, podendo ser encontrados nos seguintes materiais: lâmpadas, pilhas galvânicas, baterias, restos de tintas, restos de produtos de limpeza, óleos lubrificantes usados, solventes, embalagens de aerossóis, resto de amálgama utilizada em consultórios odontológicos, materiais fotográficos e radiográficos, embalagens de produtos químicos, pesticidas, fungicidas e inseticidas, componentes eletrônicos descartados isoladamente em placas de circuitos impressos, resíduos de produtos farmacêuticos, medicamentos com prazos de validade vencidos, latarias de alimentos, aditivos alimentares e plásticos descartados.

Maceió produz cerca de 1.100 ton.lixo/dia. O lixo coletado tem sido, a mais de três décadas, depositado em condições impróprias no vazadouro de Cruz das Almas, ocupando uma área de 33 ha. Nele, foram identificados sérios problemas ambientais, aliados àqueles de ordem social, tais como:

- Presença de catadores de lixo trabalhando em condições sub-humanas;
- Ausência de cobertura dos Resíduos Sólidos depositados;
- Existência de taludes de lixo descoberto de significativa altura e de elevada inclinação:
- Presença de vetores e microvetores transmissores de doenças;
- Presença de aves (urubus), equinos e suínos que se alimentam dos resíduos;
- Ausência de redes de drenagem de percolado e de gases;
- Contaminação do solo e das águas subterrâneas por inexistência de impermeabilização na base do vazadouro;
- Emanação de odores desagradáveis (fogo, fumaça);
- Existência de área alagada, devido à inexistência de tanques de contenção de lixiviado, propiciando assim o acúmulo de percolado na base do vazadouro.

O vazadouro de Cruz das Almas está localizado dentro da zona urbana do município, inserido na bacia hidrográfica do Riacho das Águas do Ferro, entre os bairros de Cruz das Almas e Sítio São Jorge, ocupando uma área de 33 ha, sendo 22 ha ocupadas pela massa dos resíduos sólidos urbanos que ali vêm sendo depositados desde 1967. Seu acesso é realizado através das rodovias BR 101 (a Leste) e AL 104.

Como o vazadouro não dispõe de sistema de drenagem de base e de pé de talude para captação de chorume nem sistema de tratamento para o mesmo, são comuns afloramentos de chorume no pé dos taludes e a formação de lagoa de lixiviado na base do vazadouro.

No período chuvoso, o percolado acumulado na lagoa, escoa pela drenagem natural do terreno provocando a contaminação das águas subterrâneas e do Riacho das Águas do Ferro que deságua na praia de Cruz das Almas a aproximadamente 2 km do vazadouro.

As fotos dos lixões e aterros (depósitos de resíduos sólidos) da RMM (Barra de Santo Antonio, Paripueira, Messias, Rio Largo, Santa Luzia e Coqueiro Seco, Satuba, Pilar Marechal Deodoro, Barra de São Miguel e Maceió) estão apresentadas nas figuras 12.9 a 12.18.

Figura 12.9 - Aterro de lixo da cidade de Barra de Santo Antonio.

Figura 12.10 - Aterro de lixo da cidade de Paripueira.

Figura 12.11 - Aterro de lixo da cidade de Messias.

Figura 12.12 - Aterro de lixo da cidade de Rio Largo.

Figura 12.13 - Aterro de lixo das cidades de Santa Luzia e Coqueiro Seco.

Figura 12.14 - Aterro de lixo da cidade de Satuba.

Figura 12.15 - Aterro de lixo da cidade de Pilar.

Figura 12.16 - Aterro de lixo da cidade de Marechal Deodoro.

Figura 12.17 - Aterro de lixo da cidade de Barra de São Miguel.

Figura 12.18 - Aterro de lixo da cidade de Maceió.

Na massa dos resíduos sólidos apresentam-se agentes patogênicos e microorganismos, prejudiciais à saúde humana.

A tabela 12.10 apresenta o tempo de sobrevivência (em dias) de microorganismos patogênicos presentes nos RS (resíduos sólidos).

Tabela 12.10 - Tempo de sobrevivência (em dias) de microorganismos patogênicos nos resíduos sólidos.

Microorganismos	Doenças	RS (dias)					
Bactérias							
Salmonella typhi	Febre tifóide	29 - 70					
Salmonella Paratyphi	F. paratifóide	29 - 70					
Salmonella sp	Salmoneloses	29 - 70					
Shigella	Disenteria bacilar	02 - 07					
Coliformes fecais	Gastroenterites	35					
Leptospira	Leptospirose	15 - 43					
Mycrobacterium tuberculosis	Tuberculose	150 -180					
Vibrio cholerae	Cólera	1 -13*					
	Vírus						
Enterovírus	Poliomielite (Poliovirus)	20 - 70					
	Helmintos						
Ascaris lumbricoídes	Ascaridíase	2.000 - 2.500					
Trichuris trichiura	Trichiuríase	1800**					
Larvas de ancilóstomos	Ancilostomose	35**					
Outras larvas de vermes	-	25 - 40					
	Protozoários						
Entamoeba histolytica Amebíase 08 -12							

^{*}Em alimentos. ** em laboratório.

Fonte: Lima (1995).

4. Saneamento "in situ" e Vazamentos da Rede de Esgotos

A disposição local de esgotos dos conjuntos habitacionais é através de sistemas de fossas e sumidouros distribuídos espacialmente sem nenhum critério técnico, em relação às baterias de poços para captação de água subterrânea.

Estes sistemas de esgotamento sanitário podem ser individuais, isto é: por unidade habitacional, ou condominiais, quando atendem simultaneamente 100 a 500 casas.

Os sumidouros com 2 ou 3 metros de diâmetro e profundidade média de 40 metros, são dimensionados considerando uma taxa de absorção média de 50 litros/m²/dia.

Quando, devido a problemas construtivos, esses sistemas de esgotamento sanitários extravasam, o excedente é desviado para lagoas escavadas nas proximidades, sem os devidos cuidados técnicos, tais como impermeabilização.

O Campus A. C. Simões da Universidade Federal de Alagoas e o Hospital Universitário, situados no centro da área de estudo, têm sistema de esgotamento sanitário semelhante aos dos conjuntos habitacionais.

A fim de tratar principalmente os efluentes oriundos do Hospital Universitário, foi construído, posteriormente, um sistema formado por duas lagoas facultativas, cuja disposição dos efluentes é feita por maturação, evaporação e infiltração.

Os esgotos representam uma fonte de diversas substâncias orgânicas, não degradáveis, de sais dissolvidos e metais. Alguns constituintes dos esgotos municipais junto às suas principais fontes são apresentados na Tabela 12.11.

Tabela 12.11 - Constituintes primários de esgotos de um sistema municipal (adaptado de Manaham, 1993).

Constituinte	Fonte
Substâncias consumidoras de oxigênio	Diversos materiais orgânicos, principalmente fezes
Orgânicos refratários	Efluentes industriais, produtos caseiros
Detergentes	Detergentes caseiros
Fosfatos	Detergentes
Sais	Despejos humanos, despejos industriais, amolecimento de águas
Metais Pesados	Despejos industriais, laboratórios químicos
Agentes Complexantes	Alguns detergentes, despejos industriais
Sólidos	Todas as fontes

5. Atividades Agrícolas

Nas proximidades ao norte da RMM, se desenvolve a cultura da cana-de-açúcar, principal atividade agrícola, com intensivo uso de fertilizantes e pesticidas e irrigação com solução aquosa de vinhoto. Os excedentes do vinhoto são acumulados em lagoas, para infiltração através de sulcos no terreno. Essas lagoas recebem um grande volume de vinhaça na época da safra.

Vinhoto, vinhaça ou restilo é o resíduo pastoso e malcheiroso que sobra após a destilação fracionada do caldo de cana-de-açúcar (garapa) fermentado, para a obtenção do etanol (álcool etílico). Para cada litro de álcool produzido, 12 litros de vinhoto são deixados como resíduo.

O Estado de Alagoas, é um grande produtor de cana-de-açúcar. A fertirrigação é amplamente usada nessas áreas e consiste em usar a vinhaça (ou vinhoto) como fertilizante. A vinhaça é um resíduo do processo de destilação do álcool e da fabricação do açúcar e é rico em potássio cálcio, magnésio, enxofre e micronutrientes.

Cada litro de álcool fabricado gera 13 litros de vinhaça com diferentes teores de potássio de acordo com a origem. Na região de Alagoas, os excedentes da vinhaça são acumulados em lagoas, que recebem um grande volume na época da safra, para infiltração através de sulcos no terreno.

No município de Rio Largo, da Grande Maceió, foram observadas alterações físico químicas em poços tubulares do sistema aquífero Barreiras. A contaminação pela vinhaça foi evidenciada por altas concentrações de elementos como potássio (126 mg/l) e magnésio (154 mg/l) (Cavalcante et al., 1994). A contaminação da água subterrânea em área cultivada com cana-de-açúcar também foi constatada em Paripueira (AL), conforme análises físico-químicas realizadas durante o período de 1983 a 1996, que apresentaram valores de pH decrescentes de 6,4 a 4,24 e valores crescentes de nitratos entre 0,20 e 8,25 mg/l (Cavalcante et al., 1996 apud Ferreira Neto et al., 2002).

6. Hospitais

O município de Maceió possui 34 unidades de saúde municipalizadas, 1 unidade de emergência, 5 hospitais públicos e 33 hospitais particulares, gerando diariamente cerca de 5 ton. de resíduos de serviço de saúde (IBGE, 2000).

Os resíduos de saúde do município de Maceió são coletados pela Companhia Alagoas Industrial (CINAL) e depositados em valas sépticas, localizadas no município de Marechal Deodoro. O sistema de tratamento da CINAL para os resíduos de serviço de saúde é composto de 3 valas de 3.000 m³ cada, dotadas de sistema de impermeabilização e drenagem de lixiviado. Dessas valas duas já estão esgotadas e apenas uma está em operação.

Na área de estudo foram assinaladas em mapa os focos potenciais de contaminação que representa a carga contaminante. Esses focos são denominados de *potenciais*, pois não foram realizados estudos específicos (não constam nos termos de referência) para averiguar o nível de contaminação que esses focos possam estar acarretando ao aquífero. Esse estudo poderá vir a ser executado numa etapa seguinte tomando por base as indicações contidas no presente relatório.

No quadro 12.2 em anexo, são apresentados os focos potenciais de contaminação com respectiva localização e coordenadas UTM.

12.4. Risco de Contaminação do Aquífero

Os riscos potenciais de contaminação das águas subterrâneas dos aquíferos em sua conceituação básica é uma função do caráter de vulnerabilidade do aquífero e da carga contaminante disposta sobre a superfície do terreno. Segundo esta concepção o aquífero pode apresentar uma alta vulnerabilidade, porém se não existe carga contaminante o risco é baixo. Também, a vulnerabilidade pode ser baixa, porém dependendo da natureza e intensidade da carga contaminante o risco pode ser elevado.

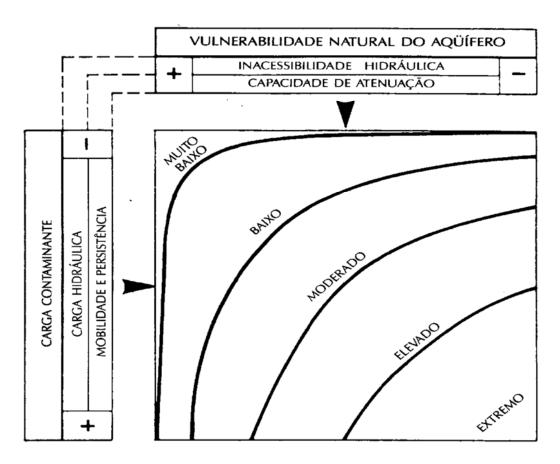
Nos últimos anos, tem se dado maior ênfase aos riscos de contaminação das águas subterrâneas, do que aos problemas de exploração. A renovação da água num aquífero se processa em velocidade muito baixa, o que dificulta a recuperação de suas características qualitativas. São comuns exemplos de aquíferos salinizados,

contaminados por nitratos agrícolas e resíduos industriais e, mais recentemente, por praguicidas, diversos solventes orgânicos e hidrocarbonetos.

O termo *risco de contaminação*, dentre outras conceituações, é definido como a probabilidade de contaminação das águas subterrâneas alcançando teores acima dos padrões de qualidade, recomendados pela OMS, para consumo humano. A conversão do risco numa séria ameaça de contaminação depende da mobilidade dos contaminantes.

O grau de risco de contaminação das águas subterrâneas, decorrentes de qualquer atividade ou forma de ocupação antrópica do meio ambiente, é determinado pelas interações de dois fatores semi-independentes - Rebouças (1994):

- As características das cargas contaminantes ou dos eventos impactantes (forma de aplicação, volume, extensão, intensidade, duração e composição).
- A vulnerabilidade do aquífero, que é função das características naturais do meio aquífero em questão (porosidade / permeabilidade, tempo de trânsito e capacidade de atenuação físico-bio-geoquímica).


A carga contaminante pode ser controlada ou modificada, o que não acontece com a vulnerabilidade do aquífero. A Figura 12.8 ilustra a interação entre os dois fatores, na forma de um modelo conceitual de avaliação do risco de contaminação das águas subterrâneas de aquíferos.

Conforme o mapa de vulnerabilidade apresentado é possível identificar áreas de vulnerabilidade extrema que, sem carga contaminante não apresenta risco de contaminação. Da mesma forma, áreas de baixa vulnerabilidade do aquífero Barreiras, submetida a elevadas cargas contaminantes, apresentam os maiores riscos de contaminação das águas subterrâneas.

A inacessibilidade hidráulica é função do grau de confinamento e profundidade da superfície freática do aquífero, do conteúdo de umidade da zona não saturada e da condutividade hidráulica vertical da zona não saturada.

A capacidade de atenuação do aquífero poroso é função da distribuição dos tamanhos dos grãos e dos minerais presentes na zona não saturada. Portanto, o conceito de vulnerabilidade, neste contexto, representa a sensibilidade de uma parte do aquífero de ser afetado por uma carga poluente.

De acordo ainda com Rebouças *op.cit* a tendência atual de avaliação dos riscos de contaminação das águas subterrâneas (Figura 12.19) é da evolução de uma abordagem tecnológica (vulnerabilidade versus cargas contaminantes, ou de quantidade/qualidade versus níveis de usos atuais e/ou futuros), para uma avaliação dos riscos e definição das ações de gerenciamento destes riscos, em termos de saúde pública.

Figura 12.19 - Esquema conceitual para avaliação do risco de contaminação - Foster *et al.* (1993).

A análise espacial e temporal do risco de contaminação das águas subterrâneas é bastante complexa, o que resultou na adoção de simplificações, que envolveram, entre outras coisas, a discretização espacial. Esta metodologia de discretização foi proposta pelo professor João Manoel Filho (UFPE) no Estudo de Avaliação dos Recursos Hídricos Subterrâneos e Proposição de Modelo de Gestão Compartilhada para os Aquíferos da Chapada do Apodi, entre os Estados do Rio Grande do Norte e Ceará, realizado para a ANA e concluído em 2010.

A metodologia consistiu primeiramente na discretização da **vulnerabilidade do aquífero** e do **número de fontes potenciais de contaminação** numa malha de resolução predefinida (1km X 1km) com 5.082 células para a RMM e posteriormente na sobreposição dos vários níveis de informação (figura 12.20). Para cada célula da malha é calculado o produto do índice de vulnerabilidade pelo número de fontes de poluição, obtendo-se na malha final o respectivo valor do índice de risco e a respectiva classificação do risco em cada célula, como mostrado na tabela 12.12.

Foi utilizando esse método que se procedeu a caracterização dos riscos potenciais de contaminação das águas subterrâneas na área de estudo da RMM.

O mapa de risco de contaminação depende essencialmente da presença de fontes potenciais de poluição e reflete a situação revelada pelo cadastro dessas fontes no ano de 2009.

A análise do risco de contaminação do aquífero Marituba envolve a interação por meio da sobreposição da carga contaminante gerada (número de fontes potenciais de contaminação) e a vulnerabilidade do aquífero, classificando o risco como muito baixo a baixo.

Analise do risco de contaminação do aquífero Barreiras envolve a interação por meio da sobreposição da carga contaminante gerada (número de fontes potenciais de contaminação) e a vulnerabilidade do aquífero, classificando o risco como muito baixo a moderado.

Tabela 12.12 – Valor numérico do índice de risco com base na vulnerabilidade natural e no número de fontes potenciais de poluição cadastradas em 2009.

Índice de Vulnerabilidade	Vulnerabilidade	Número de Fontes potenciais de contaminação	Índice de Risco	Risco
0 <x<=0,1< td=""><td>Insignificante</td><td>0<x<=1< td=""><td>0<x<=0,1< td=""><td>Muito baixo</td></x<=0,1<></td></x<=1<></td></x<=0,1<>	Insignificante	0 <x<=1< td=""><td>0<x<=0,1< td=""><td>Muito baixo</td></x<=0,1<></td></x<=1<>	0 <x<=0,1< td=""><td>Muito baixo</td></x<=0,1<>	Muito baixo
0,1 <x<=0,3< td=""><td>Baixa</td><td>1<x<=3< td=""><td>0,1<x<=0,9< td=""><td>Baixo</td></x<=0,9<></td></x<=3<></td></x<=0,3<>	Baixa	1 <x<=3< td=""><td>0,1<x<=0,9< td=""><td>Baixo</td></x<=0,9<></td></x<=3<>	0,1 <x<=0,9< td=""><td>Baixo</td></x<=0,9<>	Baixo
0,3 <x<=0,5< td=""><td>Moderada</td><td>3<x<=5< td=""><td>0,9<x<=2,5< td=""><td>Médio</td></x<=2,5<></td></x<=5<></td></x<=0,5<>	Moderada	3 <x<=5< td=""><td>0,9<x<=2,5< td=""><td>Médio</td></x<=2,5<></td></x<=5<>	0,9 <x<=2,5< td=""><td>Médio</td></x<=2,5<>	Médio
0,5 <x<=0,7< td=""><td>Alta</td><td>5<x<=7< td=""><td>2,5<x<=4,9< td=""><td>Alto</td></x<=4,9<></td></x<=7<></td></x<=0,7<>	Alta	5 <x<=7< td=""><td>2,5<x<=4,9< td=""><td>Alto</td></x<=4,9<></td></x<=7<>	2,5 <x<=4,9< td=""><td>Alto</td></x<=4,9<>	Alto
0,7 <x<=1< td=""><td>Extrema</td><td>x>7</td><td>x>4,9</td><td>Muito alto</td></x<=1<>	Extrema	x>7	x>4,9	Muito alto

O risco de contaminação na área urbana de Maceió em toda a RMM estão apresentados nas figuras 12.21 e 12.22, respectivamente.

Os mapas de risco de contaminação das águas subterrâneas da RMM mostram áreas no entorno da lagoa do Mundaú com risco moderado de contaminação. São áreas nas quais existe o maior risco de contaminação do aquífero Barreiras por fontes potenciais de contaminação na RMM, ou seja, há possibilidade de ocorrência de contato entre os contaminantes e as águas subterrâneas.

Na RMM a vulnerabilidade variou de insignificante ou nula a extrema, tendo como fator limitante principal a distância da superfície freática, já que o tipo de solo e grau de confinamento do aquífero não variou muito em função da homogeneidade da zona saturada do aquífero Barreiras.

Observou-se nas áreas mais habitadas, no entorno da lagoa do Mundaú, a existência de uma vulnerabilidade alta a extrema no aqüífero freático Barreiras em função da reduzida profundidade da sua zona saturada, presença de solo com textura arenosa e ausência de lente e/ou camada argilosa o que gera uma preocupação quanto à qualidade da água subterrânea tendo em vista o maior grau de vulnerabilidade das águas subterrâneas freáticas nessa área.

As áreas que apresentaram vulnerabilidade moderada são caracterizadas por níveis d'água baixos e por materiais menos permeáveis, enquanto as áreas que mostram vulnerabilidade insignificante ou nula a baixa são caracterizadas pela presença de camadas e/ou lentes argilosas.

No contexto da vulnerabilidade natural, foram identificados cincos índices de vulnerabilidade: Extrema, Alta, Moderada, Baixa e insignificante ou nula, cujas áreas são mostradas no Mapa de Vulnerabilidade construído a partir do método GOD.

No contexto de risco de contaminação do aqüífero superior da área em questão, determinaram-se três níveis de risco: Risco Moderado, Risco Baixo e Risco muito baixo. Essas áreas de risco estão intimamente correlacionadas ao mapa de vulnerabilidade ambiental e a ocupação humana na área da RMM (fontes potenciais de contaminação).

Em termos sazonais não há diferenças quanto a vulnerabilidade do sistema, apesar de se reconhecer que durante a estiagem, devido a superfície freática estar mais profunda, maior a barreira à penetração de contaminantes.

De acordo com o Método GOD, o sistema aquífero Barreiras na RMM é caracterizado predominantemente como de insignificante a moderada vulnerabilidade. As camadas e/ou lentes argilosas da Formação Barreiras que ocorrem na zona vadosa do aquífero freático, funcionam como barreiras naturais a infiltração de contaminantes, conferindo baixo risco de contaminação às águas subterrâneas na maior parte da área de estudo, estando o mapa de risco intimamente correlacionado ao mapa de vulnerabilidade.

Em anexo encontra-se o quadro com todos os dados brutos utilizados, relativos à vulnerabilidade da RMM.

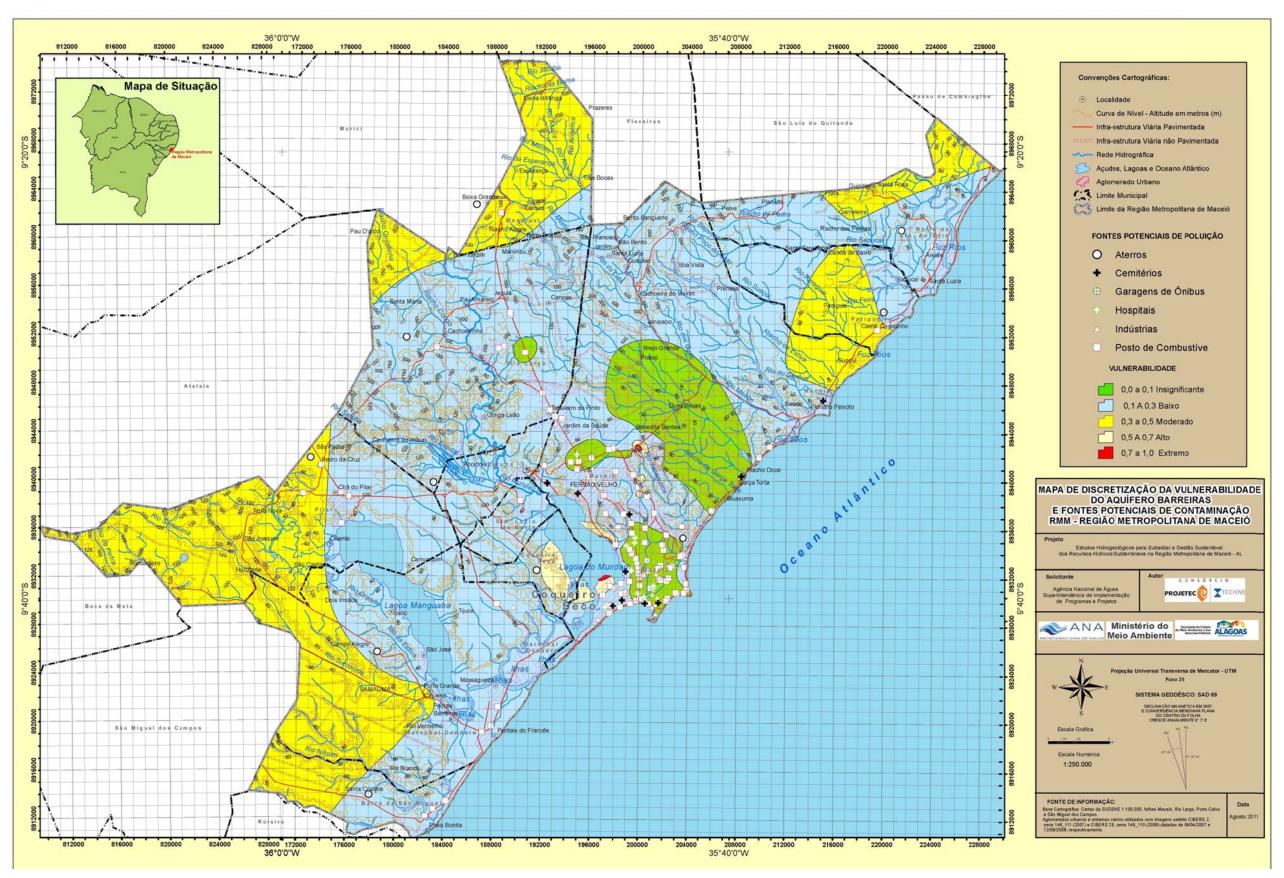


Figura 12.20 – Mapa de discretização da vulnerabilidade do aquífero Barreiras e do número de fontes potenciais de contaminação na RMM.

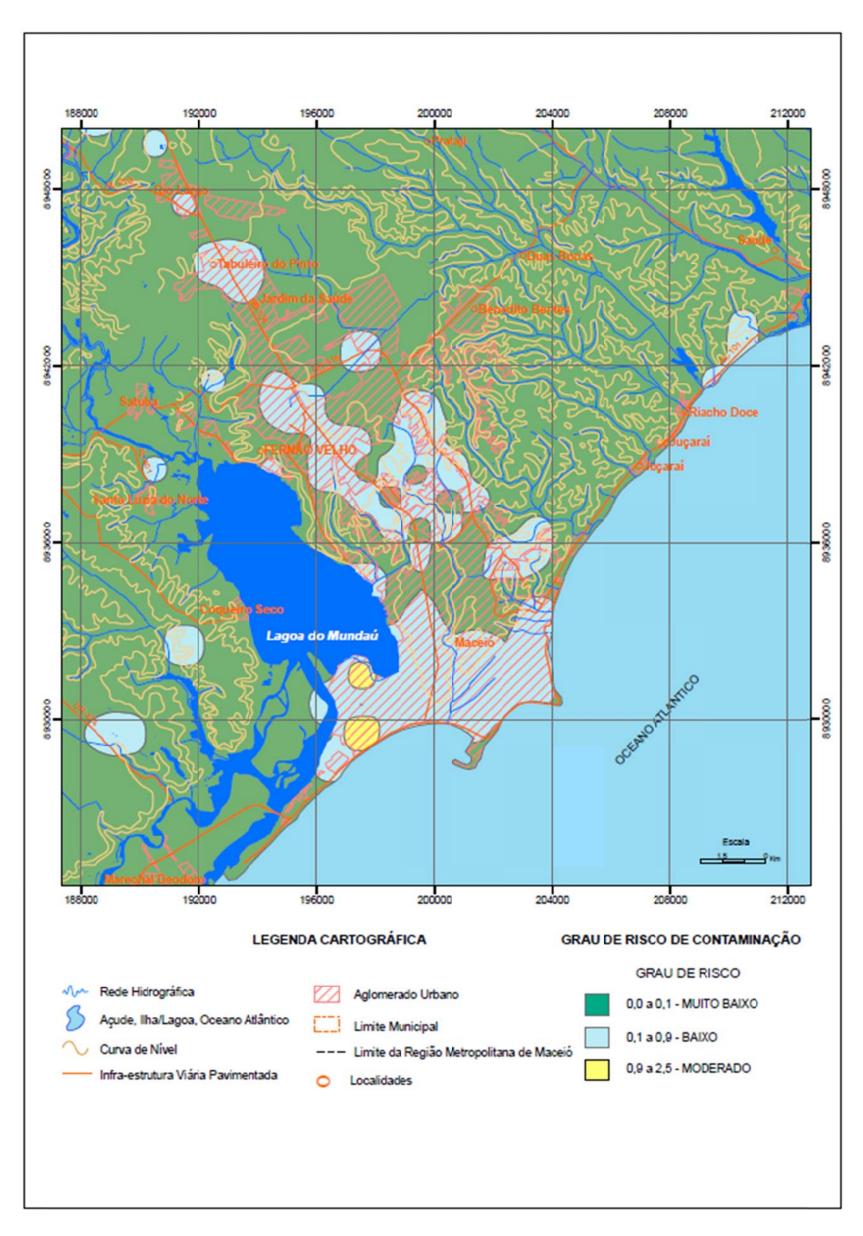


Figura 12.21 - Mapa de Risco de Contaminação das águas subterrâneas na área urbana de Maceió.

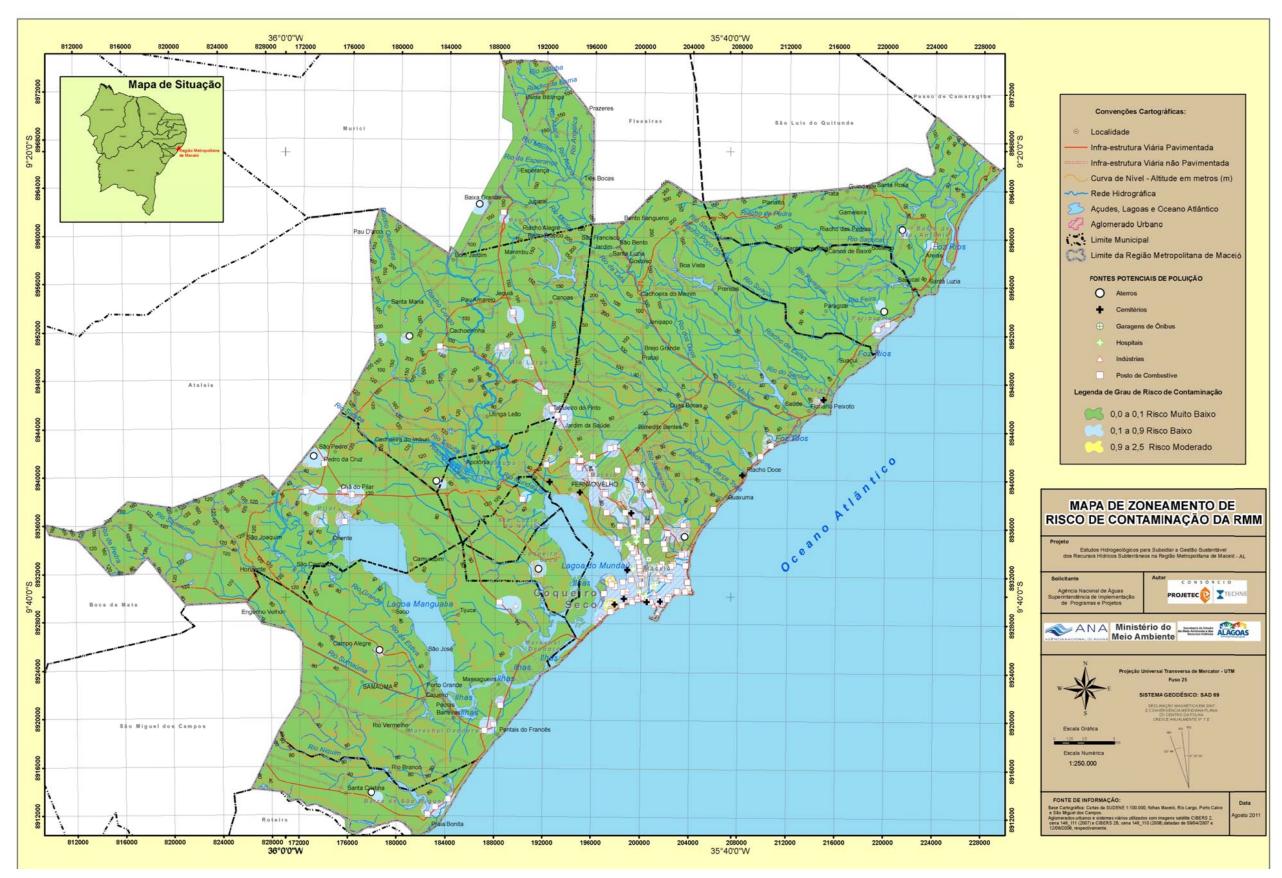


Figura 12.22 – Mapa de risco de contaminação para toda a Região Metropolitana de Maceió.

BIBLIOGRAFIA

- ABNT ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 10.004: Resíduos sólidos: classificação**. Rio de Janeiro, 71 p., 2004.
- ACQUA-PLAN/CONTEGE. Planejamento dos sistemas de esgotos sanitários e de abastecimento d'água da cidade de Maceió. SUDENE. 2 vol.,322 p., 1971.
- ALLER, L.; BENNET, J.H.; LEHR, J.H., PETTY, R.J.; HACKETT, G., **DRASTIC: a**Standardized System for Evaluating Groundwater Polution Potential Using Hidrogeologic Settings. United States Eviromental Protection Agency, Office of Research and Development, Ada, Oklahoma, EPA/600/2-87/035, 1987.
- BARBOSA, R.M.; BACAICOA, L.C.; OTERO, O.M.F; ALMEIDA NETO, T.C.; SANTOS, C.C.; CRUZ, C.S. Características do lixão de Canabrava em Salvador Bahia, e seus impactos ambientais. XVIII Simpósio de Geologia do Nordeste, p.12, 2000.
- BARROSO, C.M.R. Propagação das Plumas dos Contaminantes 1,2 Dicloroetano, 1,2 Dicloropropano e 1,2,3 Tricloropropano no aqüífero Barreiras na Área do Pólo Cloroquímico de Alagoas, Campina Grande Paraíba, 200 p. Dissertação (Mestrado em Geociências) Universidade Federal da Paraíba, 1993.
- BRANDT MEIO AMBIENTE LTDA. **Análise de Riscos do Posto Brasinha Ltda.** Relatório de Licenciamento Ambiental. Belo Horizonte. 76 p, 2001.
- CAVALCANTE, A.T.; WANDERLEY, P.R. de M. E.; FILHO, O. de A.C.; Contribuição ao conhecimento do aquífero Terciário Barreiras / Marituba na área de Maceió. In VII Simpósio de Geologia do Nordeste, Recife Pernambuco, p. 101 113, 1975.
- CAVALCANTE, A.T.; BARROS, C.M.R.; WANDERLEY, P.R.M.; SANTOS, R.C.; SANTOS, R.Q. Impactos ambientais sobre os aquíferos na Grande Maceió AL In Congresso Brasileiro de Águas Subterrâneas, 8., Recife, 1994. Recife: ABAS, p. 190-199, 1994.
- CHEREMISINOFF, P. N., A Guide to Underground Storage Tanks Evaluation, Site Assessmen & Remediation, Prentice-Hall, Inc., New Jersy, EUA. P. 155 164, 1992.
- COSTA, W.D. & SANTOS, M.A.V. dos, **Estudo hidrogeológico do aqüífero terciário de Maceió na área do riacho Reginaldo**, Maceió, In VI Simpósio de Geologia do Nordeste, Soc. Bras. de Geol. 27 p, 1974.
- CUSTODIO, E. & LLAMAS, M.R., **Hidrología Subterránea**, vol 2, Edições Omega S.A., Barcelona, 1152 p, 1983.

- ELIS V.R.; BARROSO, C.M.R.; KIANG C.H. **Aplicação de ensaios de resistividade na caracterização do sistema aquífero Barreiras / Marituba em Maceió** AL. Revista Brasileira de Geofísica 22(2): pp.101-113, 2004.
- FERREIRA NETO, J.V.; SANTOS, R.J.Q.; WANDERLEY P.R.B., WANDERLEY, P.R.M.; CAVALCANTE, A.T. Vulnerabilidade natural das águas subterrâneas em área do Tabuleiro do Martins Maceió Alagoas BR. Revista Águas Subterrâneas n. 16, pp. 57–75, 2002.
- FETTER, C.W. Jr., *Applied Hydrogeology*, Second Edition, Charles E. Merrill And Co., Columbus, Ohio, 592 p., 1988.
- FOSTER, S.S.D., Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy, in W. van Duijvanbooden and H.G. van Waegeningh (eds.), Vulnerability of Soil and Groundwater to Pollution, Proceedings and Information No. 38 of the International Conference held in the Netherlands. Noordwijk Holanda: TNO Committee on Hydrological Research, Delft, The Netherlands. p. 69-86, 1987.
- FOSTER, S.; HIRATA, G.A.; ROCHA, G.A., **Riscos de Poluição das águas subterrâneas: uma proposta metodológica de avaliação regional**. In: Congresso Brasileiro de Águas Subterrâneas, 5°. São Paulo, ABAS. p.175-185, 1988.
- FOSTER, S.S.D. & HIRATA, R.C.A. **Determinação do Risco de Contaminação das Águas Subterrâneas: Um Método Baseado em Dados Existentes**. São Paulo Instituto Geológico, 88 p., tabs. 23 cm (Boletim, 10), 1993.
- FOSTER, S.; HIRATA, R.; GOMES, D.; D'ELIA, M.; PARIS, M.; **Groundwater Quality Protection: A Guide for Water Utilities**, Municipal Authorities and Environment Agencies, The International Bank for Reconstruction and Development/The World Bank Publication. Washington, D.C., USA. 104 p, 2002.
- GUIGER, N. Poluição das Águas Subterrâneas e do Solo Causada por Vazamentos em Posto de Abastecimento. Waterloo Hydrogeologic Inc. Waterloo, Ontário, Canadá., 356 p., 2000.
- IBGE Instituto Brasileiro de Geografia e Estatística. Censo Demográfico de 2000.
- KOSTECKI, P.T. & CALABRESE, E.J. **Petroleum Contaminated Soils**, Volume II, 216 p, Lewis Publishers, Inc., Chelsea, Michigan, EUA., 1989.
- KREYSZING, E. **Matemática Superior**, Vol.I- Livros Técnicos e Científicos Editora Ltda. 299 p, 1969.

- LIMA, L.M.Q., **Lixo: Tratamento e Biorremediação**. São Paulo: 3 ed. Editora Hemus Ltda, 242p, 1995.
- MANAHAN, S.E., **Fudamentals of Environmental Chemistry**. Boston, Lewis Publ. 844 p., 1993.
- McDONALD, M.G & HARBAUGH, A.W., A Modelar Three-Dimensional Finite-Diference Ground-Water Flow Model (MODFLOW), U. S. Geological Survey Resource, Virginia, E.U.A., 187 p, 1984.
- OLIVEIRA, E.; CLEARY, R.W.; CUNHA, R.C.A.; PACCHECO, A., **Gasoline Hydrocarbons Groundwater Pollution Potential in Metropolitan São Paulo,** *In:*Proceedings of International Seminar of Pollution, Protection and Control of Ground Water, IAWPRC, ABAS, Porto Alegre RS. 22 p. 1998.
- PASTORE, E.L. &. FORTES, R.M. **Caracterização e classificação de solos**. In. OLIVEIRA, A. & BRITO, S. Geologia de Engenharia. São Paulo: Associação Brasileira de Geologia de Engenharia, 42 p, 1998.
- REBOUÇAS, A.C. **Sistema Aqüífero Botucatu no Brasil**. in: ABAS– Congresso Brasileiro de Águas Subterrâneas, 8, Recife, PE. Anais. p. 500-509. 1994.
- ROCHA, W.J.S.; CAMPOS, J.E.G.; CAVALCANTE, A.T. **Estudo da Evolução Potenciométrica dos Aquíferos da Região de Maceió Al**. São Paulo, UNESP, Geociências, v. 24, n. 2, p. 193-201, 2005.
- SILVA, A. C.**Caracterização do processo de salinização do aquífero Marituba no bairro do Mutange, Lagoa Mundaú** Maceió Alagoas. Dissertação de Mestrado. Departamento de Geociências do Centro de Tecnologia da Universidade Federal de Pernambuco. 131p., 2005.
- V & S ENGENHEIROS CONSULTORES S/C. Macro drenagem do grande Tabuleiro do Martins. Estudo de impacto ambiental – EIA, Diagnóstico ambiental. Vol. 2. ADEDI – Associação das Empresas do Distrito Industrial Governador Luiz Cavalcante – Convênio SUDENE. 231 p, 1998.
- WANG, H.F. & ANDERSON, M.P. Introduction to Groundwater Modeling, W.H. Freeman and Company, São Francisco, E.U.A., 320 p.,1982.
- WORLD BANK, **Groundwater Quality Protection: A Guide for Water Service Companies**, Municipal Authorities and Environment Agencies The World Bank for Reconstruction and Development/The World Bank Publication. Washington, D.C., USA. 76 p, 2006.

