Federative Republic of Brazil
Luiz Inácio Lula da Silva
President

Ministry of Integration and Regional Development
Waldez Góes
Minister

National Water and Sanitation Agency

Collegiate Board
Verónica Sánchez da Cruz Ríos (Director-President)
Filipe de Mello Sampaio Cunha
Ana Carolina Argolo
Marco José Melo Neves (interim)
Marcelo Medeiros (interim)

General Secretary (SGE)
Nazareno Marques de Araújo

Federal Prosecutor's Office (PF/ANA)
Luís Carlos Martins Alves Júnior

Internal Affairs Office (COR)
Ivja Machado

Internal Audit (AUD)
Eliomar Ayres da Fonseca Rios

Chief of Staff (GAB)
Cláudia de Araújo Guimarães Kattar

Special Advisory for Governance (ASGOV)
Adriana Christina Pinto Rodrigues

Water and Socioeconomic Studies Superintendency (SHE)
Ana Paula Fioreze

National Hydro-Meteorological Management Superintendency (SGH)
Marcelo Jorge Medeiros

Critical Events Superintendency (SOE)
Joaquim Guedes Correa Gondim Filho

Plans, Programs and Projects Superintendency (SPP)
Flávia Carneiro da Cunha Oliveira

National Water Resources Management System and Subnational Agencies for Basic Sanitation Regulation Support Superintendency (SAS)
Humberto Cardoso Gonçalves

Sanitation Regulation Superintendency (SSR)
Cintia Leal Marinho de Araújo

Regulation of Services and Dam Safety Superintendency (SRB)
Roberto Bruno Moreira Rebouças

Regulation of Water Resources Uses Superintendency (SRE)
Marco José Melo Neves

Information Technology Superintendency (STI)
Mayara Nascimento F. D. Andrade

Inspections Superintendency (SIF)
Viviane dos Santos Brandão

Administration, Finance and Personal Management Superintendency (SAF)
Luís André Muniz

IRRIGATION ATLAS
WATER USE IN IRRIGATED AGRICULTURE

2nd edition

BRASÍLIA - DF
ANA
2024
CONTENTS

1. PRESENTATION

2. IRRIGATION AND THE ATLAS

3. HISTORY OF IRRIGATION IN BRAZIL

4. IRRIGATED AREAS

5. ADDITIONAL IRRIGABLE AREA

6. WATER USE

7. IRRIGATED AGRICULTURE HUBS

8. SYNTHESE AND FINAL CONSIDERATIONS

BIBLIOGRAPHICAL REFERENCES
Irrigation dates to ancient civilizations, most notably by those that developed in dry regions such as Egypt and Mesopotamia. In territories with more favorable physical and climatic characteristics, agriculture initially developed in regions where the amount and spatial and temporal distribution of rainfall could supply the need of crops and as a result, irrigation emerged in more recent periods.

That is the case in Brazil, where irrigation began in the 1900s to produce rice in Rio Grande do Sul. The significant intensification of this activity in other regions began in the 1970s and 1980s. With strong and persistent growth, new hubs have emerged in recent decades.

Several factors contribute to the need for irrigation. In regions affected by the continuous shortage of water, as in the Brazilian Semiarid region, irrigation is fundamental, i.e., important part of agriculture is only made possible through the artificial application of water. In regions affected by scarcity in specific periods of the year, such as in the central region of the country (between May and September), several crops and the third harvest are only possible with the additional application of water in dry months, although production can be carried out (without or with little irrigation) in the rainy season (first and second harvests).

Although growth of the activity results, in general, in the increased use of water, several benefits can be observed, such as increased productivity, improved product quality, reduced unit costs, mitigation of climate variability impacts and the optimization of inputs and equipment. Irrigation is also fundamental to increase and stabilize food supply and the consequent increase in food and nutritional security of Brazilian population. Tomatoes, rice, peppers, onions, potatoes, garlic, fruits and vegetables are examples of foods produced using high levels of irrigation. From the point of view of rational water use, legal requirements and management instruments, such as granting the right to use water resources (water use permits) and charging for its use, seek to ensure the sustainability of the activity, increasing efficiency and the consequent reduction of waste.

Given the importance of irrigated agriculture in a country of continental dimensions and great geodiversity, the foundational knowledge and monitoring of the activity pose a significant challenge. In this context, the National Water and Sanitation Agency – ANA has promoted studies and partnerships whose results have assisted both in the planning and management of water resources within the National Water Resources Management System – SINGREH and in sectoral decision-making. Part of the results has been published in recent years in the Brazilian Water Resources Report and in specialized publications more recently, such as the Survey of
In the face of various initiatives aimed at addressing the lack of information about irrigated agriculture, as well as the availability of new secondary data, there was a need to integrate the available knowledge into a single product, configuring the technical foundation of irrigated agriculture in its interface with water resources at a national scale. It is in this context that ANA launched the first edition of *Irrigation Atlas: Water Use in Irrigated Agriculture* in 2017 – which, in this second edition, has its scope updated and expanded.

Advancements in the content of Irrigation Atlas were made possible through a broad network of partnerships, including the Ministry of Integration and Regional Development (MIDR), the National Supply Company, the Brazilian Agricultural Research Company, Agrosatélite Geotecnologia Aplicada, the Federal University of Paraná and the University of São Paulo. *Sectorial coordination*, with ANA’s closer involvement in sectoral policy and participation in forums and events - such as river basin committees and technical chambers on irrigation in the MIDR and Ministry of Agriculture, Livestock and Food Supply (MAPA) - allowed the content and presentation of results in the Atlas.

This *technical foundation* built in recent years, and which will continue to be the subject of continuous improvement, is of fundamental importance for estimating water use and updating water balances, supporting decision-making and risk analysis with a focus on the *water security* of irrigated agriculture and ensuring the multiple water uses. The Atlas gains even more significance by becoming a common basis for both the *National Irrigation Policy* and the *National Water Resources Policy*, considering the ongoing preparation of the 2022-2040 National Water Resources Plan.

The databases and other additional materials are available on the Website of the *National Water Resources Information System* - SNIRH (www.snirh.gov.br) and at http://atlasirrigacao.ana.gov.br/.
Irrigation corresponds to agricultural practice using a set of equipment and techniques to supply total or partial water deficiency to plants. Irrigation is part of our daily lives, whether on the soccer fields and residential condominiums; or when we consume rice, beans, vegetables, fruits and leafy greens – foods largely produced using irrigation.

Irrigation is essential in arid and semi-arid regions, such as Brazilian Semiariid region, where productive security is significantly affected by the non-continuous water supply, minimized only in the wetter period between December and March, when some rainfed crops can still be cultivated.

In regions affected by water scarcity during specific periods of the year, like the Southeast and, especially, the Midwest, certain crops and harvests can only be made viable with the supplementary application of water during these periods. And although production can be carried out with lower climatic risks during rainy season, Indian summers (dry periods during the rainy season) have become more frequent, causing serious damage to rainfed crops in these regions.

While it may yield excellent results on its own, this practice is usually implemented alongside other improvements in the technological package of the rural producer. In other words, it tends to be accompanied or preceded by enhancements in other inputs, services, machinery and implements – improvements that, when combined, result in several benefits.

Irrigation methods can be grouped according to how water is applied, with four main methods standing out: surface, subsurface, sprinkler and localized irrigation. In the first method, water is placed on the soil surface and its level is controlled for plant use. In underground (or subsurface) method, water is applied below the soil surface, forming or controlling the water table in the region where it can be harnessed by plant roots. In sprinkler irrigation, water is applied using pressure above the ground, through sprinklers or spray holes, resembling artificial rain. The localized method (or micro-irrigation) involves applying water in a very limited area, using small volumes of water at a low pressure, with high frequency. There are different systems for each of these methods, such as the flood system in surface irrigation; the center pivot system in sprinkler irrigation; and the drip system that occurs in subsurface and localized methods.

There is no ideal irrigation method or system a priori. Surface irrigation requires less investment and involves less attached technology.
However, land with a high infiltration rate and higher slope is not favorable to this method, but may be suitable for sprinkler irrigation which, in turn, may not be suitable for regions with strong winds. Localized methods, despite their high efficiencies, are not ideal for temporary crops (corn, beans, rice, soybeans), as they require good water quality and have a high implementation and maintenance cost.

These examples highlight that the selection of the method and system for a particular location involves an integrated assessment of socioeconomic and environmental components, including water availability and quality. After the selection of the method and system, the qualitative and quantitative efficiency of water use becomes a function of crops management, equipment and environmental resources.

According to data from FAO (2020), Brazil is among the top ten countries with the largest equipped area for irrigation in the world. The global leaders are China and India, each with approximately 70 million hectares (Mha), followed by the USA (26.7 Mha), Pakistan (20.0 Mha) and Iran (8.7 Mha). Brazil ranks sixth with 8.2 Mha, followed by countries that have an area between 4 and 7 Mha, such as Thailand, Mexico, Indonesia, Turkey, Bangladesh, Vietnam, Uzbekistan, Egypt, Italy and Spain. The global map of areas equipped for irrigation provides an overview and the regions with major concentrations.

Despite its global prominence, irrigation in our country is considered modest compared to the estimated potential, the total agricultural area, the territorial extension and set of favorable physical-climatic factors, including good water availability. This scenario is opposite to what is observed in other leading irrigation countries, as they are generally closer to the exhaustion of their estimated potential.

On the other hand, historical data show that annual increases in irrigated area in Brazil have been strong and persistent in recent decades, intensifying in recent years, indicating that the potential has been increasingly harnessed.

This growing development of irrigated agriculture in Brazil is due to some key factors, especially the expansion of agriculture into regions with unfavo-
rable climate (in part of or throughout the entire year); government incentives for regional development; and benefits observed in practice with good availability of financing.

Among the potential benefits of irrigation, one can highlight a 2 to 3 times increase in productivity compared to rainfed agriculture; a reduction in the unit cost of production; year-round land use with up to three crops per year; intensive use of machinery, implements and labor; application of agrochemicals and fertilizers through the same irrigation equipment (chemigation); increase supply and regularity of food and other agricultural products; mitigation of climatic seasonality factor and associated production risks; more favorable prices for the rural producer; greater quality and standardization of agricultural products; opening of new markets, including abroad; production of seeds and specialty crops; increase income for rural producers; regular employment opportunities; modernization of production systems, stimulating the introduction of new technologies; direct planting with selected seeds; and greater viability for the creation of agro-industrial hubs (ANA & Embrapa, 2019).

Like agriculture in general, Brazilian irrigated agriculture structure is highly dynamic and diversified. In water use permits issued by ANA in rivers under Federal domain, for example, there are records of 70 different irrigated crops associated with different methods/systems, sizes, management and regions.

Despite the diversity, some large-scale patterns can be extracted among methods/systems and crops, such as: the strong correlation between flooding and rice; between drip and coffee and fruit-growing; between sprinkler irrigation with hose reels (hydro roll) and sugarcane; and between center pivots and cotton and grains production, especially beans, corn and soybeans.

Although all the benefits related to irrigation are recognized, there are still difficulties in assessing its importance over the total amount of food produced and its role in food and nutritional security of the Brazilian population due to the unavailability of data or the impossibility of disaggregation concerning agriculture in general (average data that include rainfed data).

Productivity indicators for rice, beans and wheat – important grains in the Brazilian diet – show that predominantly irrigated production yielded, respectively 3.7, 2.0 and 1.9 times higher than rainfed production (average data for 2010–2019).

The third bean harvest mostly occurs under irrigation, as its calendar coincides with dry periods in the producing regions, with the initial plantings starting in April and harvests extending until October (Conab, 2018). The harvest is concentrated in West of Bahia, in Mato Grosso and in the region of the Federal District and neighboring municipalities of Goiás and Minas Gerais (Cristalina/GO and Unai/MG regions). With the high yields obtained through irrigation, the third bean harvest reached 8.9% of the total harvested area of beans in Brazil in 2019 but accounted for 22.6% of the quantity produced (655.4 thousand tons in 245.6 thousand ha).

The amount of beans currently produced is very adjusted to consumption (Conab, 2016) – a concern that could be minimized with greater incentives for irrigated production.

Brazilian rice has shown a decreasing allocation of area in recent years, with a systematic decrease in rainfed areas but a constant increase in average productivity, especially due to the greater proportion of irrigated crops. Thus, there has been an improvement in the technological package used, as well as greater efficiency in water use, resulting in a production with relatively stable values, in a smaller planted area, reflecting better crop yield levels.

In 2018, rainfed areas reached a historical minimum with 482 thousand ha occupied, while irrigated areas remained stable in recent years between 1.3 and 1.4 million hectares. With improvements in soil, water and input management, irrigation provides rice with more than three times the productivity observed in rainfed areas.

As a result, rainfed represents 25% of the area, but only 10% of the production, while irrigated rice concentrates 75% of the total area and 90% of the production.

Rice production that is currently focused on irrigation in Santa Catarina and mainly Rio Grande do Sul, has good prospects of increase in other states that use irrigated planting, as there are accumulated experiences and infrastructure (Conab, 2010), such as in Goiás, Mato Grosso do Sul, Tocantins, Maranhão, Piauí, Alagoas, and Sergipe.

Soybeans and corn tend to show similar additional yields under irrigation (2 to 3 times more than rainfed). Even in the 1st harvest period, corresponding to better climatic conditions for development, irrigation has demonstrated its economic viability due to the significant productivity gains and the minimization of climatic and meteorological risks, such as dry spells.

In addition to the examples highlighted earlier, it is worth mentioning the relevance of irrigated agriculture in supplying other foods for the domestic market, such as coffee, tomatoes, peppers, onions, potatoes, garlic, fruits and vegetables in general, i.e., its importance for food security and nutrition of the Brazilian population.

Yield in predominantly irrigated and non-irrigated conditions – Brazil

Rice
- Rainfed (kg/ha): 7,240
- Irrigated (kg/ha): 1,970
- 3.7 times higher

Beans
- Rainfed (kg/ha): 2,530
- Irrigated (kg/ha): 1,290
- 2.0 times higher

Wheat
- Rainfed (kg/ha): 4,930
- Irrigated (kg/ha): 2,550
- 1.9 times higher

Source: based on information from PAM (IBGE, 2020) and Embrapa Rice and Beans (2020)

Evolution of the area of rice (irrigated and rainfed) and total production – Brazil

Source: Embrapa Rice and Beans (2020)
These other crops tend to add more value than irrigated grain production, which shows significant absolute values in the quantity produced and total value but add less value to the economy (BRL per ha or BRL per m3 of water) than irrigated products from horticulture and fruit-farming, for example.

The Atlas estimated the value of irrigated production in Brazil based on microdata from agricultural surveys provided by IBGE (Census of Agriculture and Systematic Survey of Agricultural Production - LSPA).

It is estimated that between 7 and 9% of the physical production of agriculture occurs in irrigated areas, which account for 13 to 15% of the production value due to the possibility of producing more than one crop in the same location and crop year; and also because irrigated production has a higher added value (higher quality and more profitable crops). In 2019, the value of irrigated production was BRL 55 billion - 16 products had an annual value greater than BRL 1 billion.

Grains such as rice, beans, corn and soybeans, as well as sugarcane, stand out for physical production, but add less value to the economy per unit of area (between BRL 4 and 7 thousand per hectare irrigated). Coffee and cotton have significant areas but smaller than the crops mentioned earlier, adding
around BRL 11 to 13 thousand per hectare. Crops with a smaller occupied area emerge in the ranking of the irrigated production economy due to their higher proportional values: orange and watermelon (around BRL 17 to 19 thousand/ha); banana and mango (around BRL 25 thousand/ha); papaya, onion and potato (over BRL 40 thousand/ha); garlic, tomato and grape (over BRL 100 thousand/ha).

Proportionally to the total value of agricultural production, irrigation is even more relevant in rice and coffee hubs; in municipalities surrounding large urban centers supplied with horticultural products; and in the Semi-arid region where the need for irrigation is high and there is good participation of higher unit value products (BRL/ha or BRL/kg).

This is an initial overview of the value of irrigated production. The estimate is conservative as it was not possible, with the available data, to fully capture the added value – for example, due to the possibility of more favorable sales during the off-season of rainfed agriculture or the superior quality of certain products.

Irrigation in Brazil requires further economic studies to reveal its importance more deeply as a sector of the economy (domestic and export) and in its interactions with other sectors, such as agribusiness. It is important to indicate indicators related to water use that support management instruments and negotiated allocation in situations of scarcity (jobs, production value, revenue, and quantity produced per m³ of water, among others).

Atlas Development Process

The context of persistent relevance and development in recent decades has accelerated in the last 15 years in Brazil, even against unstable and negative periods in the Brazilian and global economy.

Monitoring and consolidation of a common technical foundation remain a major challenge for irrigated agriculture and public policies. The Irrigation Atlas seeks to fill these gaps by providing a retrospective and a current overview of Brazilian irrigated agriculture structure, as well as a vision of the future and pathways to strengthen water security.

The **Irrigation Atlas** was developed between 2018 and 2020 based on planning stages and execution strategies outlined in 2017. Activities and partnerships were defined and developed in parallel or integrated manner, depending on the nature of the theme. This preparation process can be summarized in the following macro activities, which will be detailed in methodology and results throughout the document: irrigated areas, water demand, expansion potential, and integrated analysis.

The mapping of **irrigated areas** guides the other analyses of the Atlas, and therefore, significant effort is applied in this macro activity. With the National Supply Company - Conab, irrigated rice and coffee areas were mapped in the main producing states. The Brazilian Agricultural Research Company – Embrapa, published the historical series of center pivot irrigation (1985–2017, updated by ANA for 2019).

With the support of Agronavix Geotecnologia Aplicada, irrigated and fertigated areas of sugarcane were identified and tools were created to support mapping out the other nonpoint irrigated areas in the Semi-arid region. ANA carried out additional mapping in public perimeters and other typologies that deviate from the aforementioned standards and that are focused in the Northeast and other specific hubs (especially fruit and horticulture). Supplementary data from the 2017 Agricultural Census of IBGE complemented the panorama of irrigated areas in Brazil.

The conversion of irrigated areas into **water demand** is based on estimating the balance in irrigated areas – similar to what irrigators do on their properties. This calculation requires a set of additional information and parameters on planting/harvesting schedules, duration of cycles, crop coefficients and climatic data, among others. This step relied on the knowledge acquired and published by ANA in the Handbook of Consumptive Water Uses in Brazil and in the Technical Coefficients for Irrigated Water Use. It also involved the partnership of the Federal University of Paraná - UFPR in updating and ensuring the consistency of potential evapotranspiration and rainfall databases.

The potential for expansion of irrigated agriculture, in terms of both area and water use, constitutes another central component of the Atlas and the overall sector planning. In partnership with the MDR and ESA/LQ-USP, with support of FAO, estimates of additional irrigable area in Brazilian territory were updated, followed by an effort to convert areas into water demand and the projection of this potential development within the adopted planning horizon (2040).

In the **integrated analysis**, the aim is to consolidate the previous steps in their most relevant indicators in order to aid planning and decision-making. This activity also involves efforts in communication and providing additional information and interactive content in SNIRH, which makes the content of the Atlas more extensive than the publication itself.

The results of the Atlas and the ongoing dialogue with the sector in recent years have also allowed contributions to the planning and implementation of public policies, notably the implementation of National Policies (Agriculture, Irrigation and Water Resources).

Macro activities and partnerships in the development of the Irrigation Atlas

- **Publication Partners**
- **Irrigated Areas** (mapping and surveys)
- **Water Demand** (water use)
- **Integrated Analytics**
- **2040 Potential Expansion Scenario**

Studies and Tools for Irrigated Agriculture

Initiatives aimed at expanding knowledge about irrigated agriculture in its interface with water resources, i.e., on irrigated areas and crops and their reflection in water demand and in the current and future water balance, have resulted in an updated technical foundation synthesized in the Atlas. The continuation of these efforts is expected to contribute to recognizing the importance of irrigation in the expansion and sustainability of agricultural production, as well as the specific and unique stimuli that the sector requires compared to other producers.

All pathways to water security in irrigation require up-to-date and systemized information that can be accessed by users and decision makers.

Given the complexity, continuous expansion, and the diffuse and dynamic nature of irrigation in Brazil, the search for data must occur on different work fronts, with different methodologies and frequencies. Systematic subjective surveys and geotechnology-based surveys (remote sensing) emerge as promising experiences that should be integrated and expanded.
In addition to these groups, the importance of field surveys is highlighted. Defining sample networks in irrigated agriculture hubs would provide significant gains in the quality of information and validation of data obtained through subjective surveys and geotechnologies. Water use efficiency (or irrigation efficiency), understood as the relationship between the volume of water needed for plants and the volume drawn from water bodies (losses), correlates with the adopted irrigation system but is highly influenced by local management practices and the use of water and soil. Therefore, it is an important parameter to be monitored in field surveys.

Systematic surveys related to Brazilian agriculture are crucial for understanding the current reality and the expansion trends, which are essential for general planning, credit promotion, and the forecast and monitoring of harvests. In general, these surveys use a network of informants to collect data (subjective methodology), although they may be supported by information obtained from direct methods, such as mappings. The Systematic Survey of Agricultural Production – LSPA, the Municipal Agricultural Production – PAM survey and the Census of Agriculture are examples of this type of survey.

In addition to these national surveys, it is worth noting the existence of administrative records in state agencies, farmers’ associations, and institutions responsible for public projects (in particular DNOCs, Codevasf and the MIDR). Most of this information is used internally by institutions or made available in a dispersed or restricted manner. The same applies to numerous scientific researches and academic systematization surveys that do not reach levels of consolidation or dissemination applicable to management.

In this regard, to advance in producing data on Brazilian irrigation, priority should be given to incorporating or adapting existing surveys in institutions such as IBGE and Conab, as well as the consolidation of scattered data in other institutions, to expand the systematic data on irrigated agriculture. In this way, existing data collection networks and knowledge can be leveraged, optimizing resources application.

The frequency and level of detail of systematic subjective surveys should be improved, but it is much more aimed at a periodic snapshot of agriculture than at monitoring it with the necessary level of spatial and temporal detail.

Remote sensing, coupled with other geotechnologies, allows a significant scale-up in surveys related to irrigated agriculture. Visual or automated interpretation of satellite images for identifying irrigated areas and direct estimates of water consumption by irrigation can be highlighted as those with the highest development potential for application in Brazilian irrigation hubs.

The visual interpretation of satellite images remains an important tool for gathering data on irrigated agriculture. With the large supply of images (historical and current), many of them free and pre-processed, it is possible to establish objective criteria for identifying irrigated areas and associated reservoirs. This method has been used by ANA and Embrapa to monitor center pivot irrigation in the national territory (ANA, 2019); and by ANA and Conab to map irrigated rice and coffee (ANA, 2020).

Visual interpretation is most feasible in regions where: (a) predominant irrigation systems have well-defined geometries, such as center pivots; (b) agriculture is only feasible through irrigation (total or in specific periods of the year), such as in the Brazilian Semiarid region; or (c) there is well-founded knowledge of the reality in the field or the possibility of on-site validation. The main effort consists of determining the best image types, the best image band compositions, the most suitable time of year, the necessary additional processing, and other auxiliary data (such as digital terrain models, census data and vegetation indices). Analyst training is also a key factor in the process.

Identifying certain types of irrigation requires a time series analysis of satellite images over large areas, which is only possible with the application of automated or semi-automated processes.

Time series of vegetation indices (IVs) – a type of product derived from satellite image processing – have been an important input for identifying agricultural crops and land use changes. The most well-known vegetation index is NDVI, which ranges from -1 to +1, with the lowest value indicating little or no biomass (vegetation), while the highest value indicates a greater presence of green biomass. Analyzing IVs over time allows extracting patterns that characterize a particular crop or group of crops, or even determined dynamics of land use (e.g., changing from one crop to another). By transforming the standards into programming and processing routines of a series of images, this type of mapping can be carried out on a large scale. This technique was applied in mapping the Irrigated and Fertigated Sugarcane in Brazil (ANA, 2020), which was an evolution of the Survey of Irrigated Sugarcane in the Central-South Region of Brazil (ANA, 2017). It was also applied in the evaluating mapping methodologies for other irrigated areas in irrigation hubs (ANA, 2020), with promising results especially in the Semiarid region.

Remote sensing data can also be used to directly estimate water consumed by irrigated agriculture. One way is through estimating real evapotranspiration (ETR), i.e., the amount of water that evaporates from the soil and is transpired by vegetation together. ETR is useful for estimating the water used by plants, not differentiating the proportional contributions of different sources. With measured or estimated data on what is supplemented by natural sources (rain, soil), it is possible to estimate the artificially applied plot (irrigation). Recently, ANA launched the SSEQop–BR app (Operational Simplified Surface Energy Balance), developed in partnership with USGS (United States Geological Survey), available on SNIRH and which allows the estimation of ETR anywhere in the national territory, from 1985 to the last available Landsat images period (generally a few days ago). The work is documented in the publication Real Evapotranspiration Estimates by Remote Sensing in Brazil (ANA, 2020).

Related to water use estimates, ANA launched in 2019 the Technical Coefficients for Irrigated Water Use, which presents reference values with great relevance for the planning and management of irrigation, including as support for granting and sizing projects and studies. Water use indicators – monthly, by crop and municipality – are the result of millions of simulations with climatic data and detailed technical parameters throughout the study. The results can be accessed on an interactive indicator display on the SNIRH website.

In partnership with IBGE, the study on Rainfed Water Use in Brazil (2013–2017) (ANA & IBGE, 2020) quantified the use of green water (from the environment) by Brazilian agriculture and especially water deficits and consequent crop yield losses. The study also identified regions at risk to production that resulted both from more unfavorable weather in the analyzed period (in relation to historical averages) and from production itself in areas or calendars of higher production risk. Monitoring green water and its relationship with blue water (irrigation) proved to be important for agricultural planning by identifying areas where the productive potential has been systematically impaired and whe-
Irrigation could be encouraged, agricultural insurance reinforced, or agricultural credit discouraged.

ANA has also made efforts to monitor water use based on energy consumption. Most of the water extracted for irrigation uses electricity, and current legislation grants irrigators involved in agricultural activities a special discount on the tariff (green tariff), ranging from 60% to 90%, applied during a continuous daily period of eight and a half hours, taking advantage of the nighttime period with lower demand on distribution systems.

Considering the strategic value of energy consumption information and its potential conversion into water consumption, ANA and ANEEL issued joint Resolution no. 05/2016 with the objective of improving both water and electricity regulations. The Resolution establishes conditions and procedures to be observed by the distributors in providing information on consumer units engaged in irrigation or aquaculture activities. The data are restricted and must be used by ANA to exercise its functions, being of particular importance in planning, regulation, and inspection activities. These consumption data were used to map or verify irrigated areas in the Atlas.

Finally, it is worth noting that the Rural Environmental Registry (CAR) – created by Law no. 12,651/2012, within the scope of the National Environmental Information System (SINIMA) – is another important database. Mandatory for all rural properties in Brazil, it will consequently have a census character, storing georeferenced information about permanent preservation areas, legal reserves, remnants of native vegetation and consolidated areas (agricultural, for example).
Practiced since ancient civilizations that developed in dry regions, large-scale irrigation is, however, a recent practice in regions with more favorable physical and climatic characteristics for rainfed agriculture. These are areas where the quantity and spatial-temporal distribution of rainfall are capable of adequately meeting the water needs of crops.

In Brazil, irrigation began between the late 19th century and the early 20th century in the rice fields in Rio Grande do Sul, establishing itself as an important irrigation center since then. The beginning of the operation of the Cadro reservoir in 1903, whose construction began in 1881 (BRASIL, 2008), was an important milestone in this process. There were also occasional irrigation initiatives in the Semi-Arid region in this initial phase, especially with the construction of public reservoirs for multiple uses.

In 1960, Rio Grande do Sul still concentrated 57.2% of the irrigated area, totaling 462 thousand hectares, while new irrigation hubs were emerging and consolidated in São Paulo, Minas Gerais, Bahia, and Santa Catarina. These states accounted for 12.3%, 10.3%, 4.9% and 4.5% of the total area in 1960, respectively.

Driven by the expansion of the agricultural frontier to regions with less favorable physical and climatic characteristics (either total or seasonal), the greater economic viability of mechanized irrigation, and observed benefits, irrigation intensified in Brazil from the 1970s and 1980s.

Among the most important government initiatives, the following stands out: the creation of the Executive Group on Irrigation for Agricultural Development - GEIDA (1968); the Multianual Irrigation Program (1969); the National Integration Program (1970); the National Program for the Rational Use of Irrigable Floodplains - PROVÁRZEAS (1981), the Irrigation Equipment Financing Program – PROFIR (1982), the National Irrigation Program – PROINI (1986) and the Northeast Irrigation Program – PROINE (1986). In the Midwest, one of the most important programs was PRODECE (Japan-Brazil Agricultural Development Cooperation Programs in the Cerrado biome), signed in 1974 and implemented from 1979 onwards.

The National Department Against Drought (DNOCs), created in 1945, the São Francisco and Paraíba Valleys Development Company (CODEVASF), created in 1975, and the Superintendency for the Development of the Northeast (SUDENE), created in 1959, were some of the main institutions responsible for implementing actions listed in government programs, despite the great relevance of financial institutions such as Banco do Nordeste, created in 1952, and resources from loan agreements with international organizations.

1 DNOCs originated from the Inspectorate of Works Against Drought (IOCS), created in 1929.
It is noteworthy that this development phase initiated in the 1980s with PRONI and PROINE, was marked by a clearer division of roles between government and private action in the development of irrigation programs (BRASIL, 2008). The government took the lead role in the execution of collective works for common use (as in public projects), basic infrastructure (power transmission and distribution, macro-drainage, logistics) and support (financing, research, extension). Private initiatives were responsible for supplementing government actions and other activities to implement irrigation on the property scale. This division, along with the establishment of clearer and more specific guidelines and standards, occurred with the regulation of the Irrigation Law in 1984 (Decree no. 89,496) – five years after its enactment (Law no. 6,662/1979).

Although government initiatives did not fully achieve the planned goals, several collective works of common use and basic infrastructure were executed, in addition to the provision of legal, institutional, technical, and financial support, which boosted the expansion of the activity, especially in stimulating the private sector through basic infrastructure and financing.

State institutions have also been very important in the development of irrigated agriculture, as seen in Rio Grande do Sul and São Paulo.

In Rio Grande do Sul, the role of the Rio Grande Rice Institute (IRGA), transformed into a state agency in 1949, is of recognized importance for the development of irrigated rice farming, in articulation with other state institutions. The operation of the Experimental Rice Station in the municipality of Cachoeirinha since 1939 is a symbol of performance in the expansion and modernization of the activity. Currently, IRGA also has other experimental stations and substations.

In São Paulo, the Water and Energy Department (DAEE) carried out a series of studies and surveys from 1972, with one of the products being the Basic Diagnosis for the State Irrigation Plan, which identified 4.5 million hectares (Mha) of economically irrigable land (São Paulo, 2000). The implementation program of Irrigation Demonstration Fields (CDI) was another DAEE initiative and was the first of the 13 CDIs implemented in Guairá – still one of the largest irrigation hubs in Brazil.

Several factors contributed to the expansion of irrigation use in the state of São Paulo, which also became a hub for disseminating the practice to other regions, such as: the emergence of irrigation equipment manufacturing companies; improvement in the standard of agricultural products, especially fruits; high land value land requiring better utilization of it; feasibility of producing more noble crops with higher commercial value; early or late harvests, which enabled better prices; the stimulus given by the good results obtained by neighboring irrigating farmers; knowledge and dissemination of irrigation techniques; emergence of automated equipment for irrigation in large areas; and the possibility of maximizing the use of agricultural machinery and implements (São Paulo, 2000). Such factors are common in most Brazilian irrigation hubs.

The first National Irrigation Policy of 1979, although successively amended directly or indirectly by later regulations, was in force until the current Policy was issued, which was processed for about two decades until its enactment in January 2013 (Federal Law no. 12,787/2013). However, there has been little progress in regulating the provisions of the new policy so far.

The lack of a legal framework for the sector in the last decades can be pointed out as an important hindrance to its development, especially concerning long-term private investment, i.e., the role of the State as an inducer and not a centralizer of development.

Historical milestones for the development of irrigated agriculture in Brazil

<table>
<thead>
<tr>
<th>YEAR</th>
<th>MILESTONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1903</td>
<td>Start of operation of the Cadro reservoir for rice irrigation in Rio Grande do Sul</td>
</tr>
<tr>
<td>1909</td>
<td>Creation of the Inspectorate Against Drainage (IIOCS), called the Federal Inspectorate of Works Against Drainage (IFOCS) in 1919. Transformed into DNIOCS in 1945</td>
</tr>
<tr>
<td>1926</td>
<td>Creation of the Rio Grande do Sul Rice Union. This gave way to IRGA in 1940</td>
</tr>
<tr>
<td>1934</td>
<td>Approval of the Water Code (Federal Decree no. 24,643/1934)</td>
</tr>
<tr>
<td>1940</td>
<td>Creation of the Rio Grande Rice Institute (IRGA)</td>
</tr>
<tr>
<td>1945</td>
<td>Creation of the National Department of Works Against Drainage (DNIOCS)</td>
</tr>
<tr>
<td>1948</td>
<td>Creation of the São Francisco Valley Commission, called the São Francisco Valley Superintendency in 1947. Transformed into CODEVASF in 1975</td>
</tr>
<tr>
<td>1952</td>
<td>Creation of Banco do Nordeste</td>
</tr>
<tr>
<td>1959</td>
<td>Establishment of the Executive Group on Irrigation for Agricultural Development (GEIDA) at the Ministry of Internal Relations</td>
</tr>
<tr>
<td>1968</td>
<td>Creation of the Multiannual Irrigation Program (PPI)</td>
</tr>
<tr>
<td>1970</td>
<td>Creation of the National Integration Program (PIN)</td>
</tr>
<tr>
<td>1975</td>
<td>Creation of the São Francisco and Paraíba Valleys Development Company (CODEVASF)</td>
</tr>
<tr>
<td>1979</td>
<td>Approval of the first National Irrigation Policy (Federal Law no. 6,662/1979)</td>
</tr>
<tr>
<td>1979</td>
<td>Beginning of the implementation of the Japan-Brazil Agricultural Development Cooperation Programs in the Cerrado biome (PRODECER)</td>
</tr>
<tr>
<td>1981</td>
<td>Creation of the National Program for the Rational Use of Irrigable Floodplains (PROVÁRZEAS)</td>
</tr>
<tr>
<td>1982</td>
<td>The Irrigation Equipment Financing Program (PROIF) was established</td>
</tr>
<tr>
<td>1984</td>
<td>The National Irrigation Program (PRONI) and the Northeast Irrigation Program (PROINE) were created</td>
</tr>
<tr>
<td>1988</td>
<td>The Constitution of the Federative Republic of Brazil was enacted, which addresses the use of water resources and irrigation in some articles</td>
</tr>
<tr>
<td>1997</td>
<td>Enactment of the Water Law (Federal Law no. 9,433/1997) – establishment of the National Water Resources Policy</td>
</tr>
<tr>
<td>2000</td>
<td>Creation of the National Water Agency (ANA) – Federal Law no. 9,284/2000</td>
</tr>
<tr>
<td>2001</td>
<td>CONAMA Resolution 284, of 08/30/01 was approved, which provides for the environmental licensing of irrigation projects</td>
</tr>
<tr>
<td>2008</td>
<td>The Permanent Forum for the Development of Irrigated Agriculture was created by Ordinance no. 1,869/2008, by the State Minister of National Integration</td>
</tr>
<tr>
<td>2013</td>
<td>The new National Irrigation Policy (Federal Law no. 12,787/2013) was enacted. Little progress in regulating the provisions</td>
</tr>
</tbody>
</table>

Note: Currently, Codestas' operation area covers seven river basins, the larger ones are the São Francisco, Parnaíba and Tocantins-Araguaia rivers. It fully includes all states in the Northeast, Alagoas and Tocantins, and partially Paraí, Mato Grosso, Goiás, Distrito Federal and Minas Gerais. Codestas is the federal operator of the Integration Project of the São Francisco River with the Northeast Region (PRB).
Recently, as part of the implementation of the National Irrigation Policy and the incentive to regional development, the Ministry of Integration and Regional Development (MIDR) released the Irrigated Agriculture Hubs initiative (MIDR Ordinance no. 2,554/2020). The initiative is a leveraging strategy for the activity through collaborative efforts between organizations of irrigating rural producers and various levels of government, seeking integrated solutions to the main constraints of activity development in these regions.

Between the enactment of the Irrigation Policies (1979 and 2013), a notable event in 1997 was the establishment of the National Water Resources Policy – PNRH (Law no. 9,433/1997), known as the Water Law. The PNRH aims, among other objectives, to ensure water in quantity and quality for current and future generations, as well as its rational and integrated use. Instruments of the PNRH include water resource plans, classification of water bodies into classes, fees for use, information systems, and the granting of water use rights. ANA is the federal entity responsible for implementing the PNRH.

The current National Irrigation Policy seeks compatibility with the PNRH in various aspects, such as the requirement for Irrigation Plans to be developed in harmony with Water Resource Plans.

As executors of credit and agricultural insurance policies, it is worth highlighting the participation of public banks, especially the National Bank for Economic and Social Development – BNDES, which provides resources to financial institutions at subsidized interest rates; Banco do Brasil S/A – BB, the main credit line operator for investments and funding related to irrigated agriculture, in addition to rural security and the exclusive operation of resources from the Constitutional Financing Fund for the Midwest (FCO); Banco do Nordeste do Brasil – BNDE, the main credit and agricultural insurance operator in the region, operating and managing the Constitutional Financing Fund for the Northeast - FNE; and Banco da Amazônia S/A – BAMA, the main financial development institution in the Amazon and the exclusive operator of the Constitutional Financing Fund for the Greater Brazil – FNE, for irrigated agriculture, and the exclusive operator of the Constitutional Financing Fund for the Northeast - FNE; and Banco da Amazônia S/A – BAMA, the main financial development institution in the Amazon and the exclusive operator of the Constitutional Financing Fund for the Northeast.

In regional development, BNB stands out as the main credit and agricultural insurance operator for new irrigation projects in the states of Mato Grosso and Tocantins – important frontiers for the expansion of irrigated agriculture.

Financing conditions for irrigation vary annually with the PAP, but show an increasing trend in resources allocation. Currently, interest rates are up to 6% per year, with a limit of BRL 3.3 million (individual credit) or BRL 9.9 million (collective credit) and a term of up to 10 years (with up to a three-year grace period). In Moderninfra 2020/2021, BRL 1.05 billion have been programmed. Operations are carried out through accredited financial institutions.

Despite the programs and the involvement of various institutions, the demand from irrigators for agricultural financing and insurance lines that consider the specificities of irrigated agriculture have not been fully met yet. The advantages of irrigation (changes in and/or reduction of production seasonality and reduction of the negative impacts of climate variability) are still not fully considered for the release timing of financing for crop funding, nor in the calculation of agricultural insurance risks, which obey the calendar and criteria of rainfall crops. As a result of the historical water resources report summarized above, periodic data from Agricultural Censuses conducted by IBGE (1960-2017) record the robust growth of the activity. The irrigated area has been growing at average rates exceeding 4% per year since the 1960s. Starting at just 462 thousand hectares in 1960, the 1-million-hectare mark was surpassed in the 1970s. In the 1990s, the 3 million hectares were exceeded and equipped for irrigation. In 2017, IBGE registered 6.7 million hectares irrigated.

As previously pointed out, irrigation intensified in Brazil in the 1970s and 1980s due to the expansion of agriculture to regions with less favorable physical and climatic characteristics (total or seasonal), regional development policies and the benefits observed in practice. Before this period, the only large-scale irrigation hub was in Rio Grande do Sul for rice production.

Although all the States, and consequently all regions, have expanded their irrigated areas in recent decades, increases are more significant in São Paulo, Minas Gerais, Tocantins and Bahia, in addition to Rio Grande do Sul itself and, more recently, in Goiás.

In regional development, BNB stands out as the exclusive administrator of the largest constitutional financing fund in the country (FNE), created by the 1988 Constitution. The Complementary Infrastructure Financing Program – FNE Prioinfra is extensive, providing resources for basic sanitation, transportation, and logistics, as well as for the generation and distribution of electric power and water supply projects for irrigation. The Irrigated Agriculture Financing Program – FNE Irrigation is even broader, financing everything from environmental studies and basic/executive irrigation projects to the project feasibility and technical assistance. The projected financing for FNE Irrigation in 2020 is BRL 567 million – with a term of up to 20 years (and up to a five-year grace period).

Evolution of the Irrigated Area in Brazil and participation of the Regions
In the Northeast, there was a rapid incorporation of irrigated areas starting from the 1980s, a result of investments in public perimeters and other water infrastructure that boosted the private sector. In 2006, the region exceeded 1 Mha of irrigated land. In the last decade, except for Bahia, there is noticeable relative stability or a decline in areas, a consequence of the reduction of investments to expand the water infrastructure and the water crisis experienced in the recent years. Thus, the Northeast has reduced its share of the total area. Regarding the recent water crisis, it is estimated that many of the equipped areas between 2015 and 2019 were either idle or applying irrigation levels below the crop’s needs (deficit irrigation). On the other hand, Bahia shows strong recent growth, especially in the Cerrado biome in the west (Barreiras region), with a significant adoption of center pivots.

The Midwest, which has experienced an accelerated agricultural expansion process since the 1970s, began to incorporate more significant irrigated areas starting in the 1990s. It has been the region with the greatest expansion in the last 20 years, driven by Goiás and, more recently, by Mato Grosso, largely due to the expansion of center pivots for grain production and of sprinkler systems for sugarcane. Consequently, there is a significant increase in the in the region’s share of the national total.

The Southeast has been showing successive and significant increases since the 1970s, counting on most diverse range of irrigation methods and types among Brazilian regions. The region totals 39.8% of the irrigated area - São Paulo and Minas Gerais concentrate in absolute terms, but Espírito Santo has the highest share of irrigated crops in the total agricultural area.

Finally, the South – a traditional irrigated production hub - has also seen significant gains in area in the recent decades. However, with the development of other regions at higher rates, the relative share of the region has been decreasing, reaching 25% in 2017. Nevertheless, it remains as the second-largest region and includes the state with the largest area in the country – Rio Grande do Sul (responsible for 80% of the South’s area and 20% of the national area). In recent years, there has been relative stability in the irrigated area of rice, with short-term positive and negative variations. Production continues to increase due to productivity gains. Rio Grande do Sul also stands out for having one of the main hubs of recent irrigation expansion using center pivots, mainly for grain production, located in the Northwest of the state, in the Uruguay and Jacui river basins.

Among mechanized irrigation methods and systems (i.e., excluding surface methods), it is observed that the most water-efficient groups - localized irrigation (drip and micro-sprinkler) and center pivot sprinklers – represented about 70% of the increase in irrigated area between 2006 and 2019, according to CSEI/Abimaq (ABID, 2020). Among other systems, reel sprinkler irrigation (hydro roll) stands out, accounting for about 15% of the increase in equipped area during the period.

The data also reaffirm the strong and persistent expansion of irrigation, which continues to grow above 200 thousand hectares per year despite the unfavorable economic conditions in recent years.

Between 2000 and 2011, the average annual growth was 130 thousand hectares; between 2012 and 2019 there was an annual rate of 216 thousand hectares (66% higher). The growth in the share of irrigated agriculture in physical production and the value of food production is even more important, considering the higher yield and the higher quality of the product compared to rainfed agriculture, as well as enabling higher-value crops and positive synergies with agribusiness.
IRRIGATED AREAS

Irrigated areas are key parameters in the subsequent stages of irrigated agriculture analysis. The concept used here corresponds to the equipped area for irrigation. With the observed strong expansion and the high growth potential, monitoring becomes a challenge for an activity that already lacks data and reference information.

Census data, valuable for various applications, have limitations for use in sectoral and water resources management, such as the subjective methodology (use of surveys), the time frame (decennial censuses), data aggregation level (municipalities or states), and confidentiality (resulting in a large number of misidentifications, i.e., unavailable data).

Aware of this challenge, ANA intensified an information survey strategy in 2014, resulting in an estimated equipped area for agriculture of 6.1 Mha in 2014 (ANA, 2016). This diagnosis revealed not only the continued strong sector expansion compared to the 2006 agricultural survey by IBGE but also differentiated spatial concentration patterns at the scale of river basins and sub-basins. In other words, although the national average growth of 36% between 2006 and 2014 was not surprising given the observed record, in important regions for water resources management, the areas exceeded census estimates by up to three times. It should be noted that the differences between the data do not necessarily refer to the dynamics of irrigation in the period, but rather methodological and conceptual differences associated with the surveys.

The 2017 Atlas included updates from previous products and more recent data at the time, especially the Survey of Irrigated Sugarcane in South-Central Brazil (ANA, 2017), the update of center pivot mapping, and regional mapping carried out in water resource plans. It also included a reevaluation of census projections that included new projection and completing misidentifications criteria.

For the preparation of the 2017 Atlas, the main groups of large-scale irrigated areas were identified, requiring different survey strategies and methodologies due to their specific characteristics. Thus, rice, sugarcane and other crops irrigation using center pivots were identified as the most significant groups on the national scale, totaling 70% of the total area and occurring concentrated throughout the territory in national and regional hubs.

Irrigation of other crops not using center pivots - associated with localized systems (micro-sprinklers and drip) and conventional sprinklers - represents the main groups of other crops irrigated using other methods/systems. This group also tends to occur more diffusely in the territory – with the exception of public perimeters and other regional hubs.
In this profile, irrigation is supplementary, when an unexpected dry spell occurs, consequently, increasing the water use. It is an infrequently observed profile, more common in irrigated sugar cane (flooding), rice, and coffee. The profile is characterized by the occurrence of irrigated coffee (mainly permanent irrigated crop), as well as the subdivision of sugarcane into irrigated and fertigated. Other crops irrigated using other systems, such as pastures, flowers, vegetables, fruits, planted forests, etc., remain as an aggregate typology.

The municipal map highlights the predominant crop(s) typology among the irrigated areas of the municipalities. Rice is concentrated in hubs in the South and Tocantins, while irrigated sugarcane predominates along the Northeastern coastline and other hubs in the Central–South and Northeast region; sugarcane fertigation predominates in the Central–South (São Paulo, Southwestern Mato Grosso); coffee is prominent in hubs in Espírito Santo, Minas Gerais, Bahia and Rondônia; other temporary crops cultivated using center pivots are found in the central plateau (especially Goiás, Minas Gerais, and Bahia); and other crops and systems are prevalent in the North and Semiarid region.

The predominant irrigation methods show the correlation of rice with the surface method (flooding), pivots, and fertigation. The 2017 Atlas marked the first major systematization of these surveys by typology, a result of ANA’s own studies and partnerships, complemented with census projections and secondary data. With the advances achieved, there are uncertainties regarding irrigated areas, their locations, and the associated water consumption were reduced.

In the current edition, the Atlas updates and expands previous analyses, delving deeper into the use of geotechnologies and strengthening partner networks in surveys. In addition to the typologies previously studied (rice, sugarcane, and pivots), it was possible to detail the occurrence of irrigated coffee (mainly permanent irrigated crop), as well as the subdivision of sugarcane into irrigated and fertigated. Other crops irrigated using other systems, such as pastures, flowers, vegetables, fruits, planted forests, etc., remain as an aggregate typology.

The 2017 Atlas marked the first major systematization of these surveys by typology, a result of ANA’s own studies and partnerships, complemented with census projections and secondary data. With the advances achieved, there are uncertainties regarding irrigated areas, their locations, and the associated water consumption were reduced.

In the current edition, the Atlas updates and expands previous analyses, delving deeper into the use of geotechnologies and strengthening partner networks in surveys. In addition to the typologies previously studied (rice, sugarcane, and pivots), it was possible to detail the occurrence of irrigated coffee (mainly permanent irrigated crop), as well as the subdivision of sugarcane into irrigated and fertigated. Other crops irrigated using other systems, such as pastures, flowers, vegetables, fruits, planted forests, etc., remain as an aggregate typology.

The municipal map highlights the predominant crop(s) typology among the irrigated areas of the municipalities. Rice is concentrated in hubs in the South and Tocantins, while irrigated sugarcane predominates along the Northeastern coastline and other hubs in the Central–South and Northeast region; sugarcane fertigation predominates in the Central–South (São Paulo, Southwestern Mato Grosso); coffee is prominent in hubs in Espírito Santo, Minas Gerais, Bahia and Rondônia; other temporary crops cultivated using center pivots are found in the central plateau (especially Goiás, Minas Gerais, and Bahia); and other crops and systems are prevalent in the North and Semiarid region.

The predominant irrigation methods show the correlation of rice with the surface method (flooding), pivots, and fertigation. The 2017 Atlas marked the first major systematization of these surveys by typology, a result of ANA’s own studies and partnerships, complemented with census projections and secondary data. With the advances achieved, there are uncertainties regarding irrigated areas, their locations, and the associated water consumption were reduced.

In the current edition, the Atlas updates and expands previous analyses, delving deeper into the use of geotechnologies and strengthening partner networks in surveys. In addition to the typologies previously studied (rice, sugarcane, and pivots), it was possible to detail the occurrence of irrigated coffee (mainly permanent irrigated crop), as well as the subdivision of sugarcane into irrigated and fertigated. Other crops irrigated using other systems, such as pastures, flowers, vegetables, fruits, planted forests, etc., remain as an aggregate typology.
Below is a summary of the methodology and results of the surveys of the main typologies of irrigated areas used in the Atlas.

Brazilian rice cultivation has shown a decreasing trend in area allocation in recent years, with a systematic decline in rainfed areas; however, there has been a constant increase in average productivity, especially due to higher proportions of irrigated crops – currently responsible for 90% of production and 75% of the harvested area. Rice accounts for about 25% of the irrigated areas in Brazil and 40% of the water volume extracted. Flooded cultivation of rice requires more water per unit area compared to other systems. Additionally, rice cultivation is concentrated both in the territory and in the agricultural calendar (an annual crop lasting 100 to 140 days, concentrated between October and April), which facilitates its identification.

The mapping of irrigated rice was carried out by ANA and Conab in partnership with public institutions and private initiatives (cooperatives, consulting firms, and rural producers) in the main producing states. Satellite images and field checks were used – the methodology and results are detailed in the Irrigated Rice Mapping in Brazil (ANA & Conab, 2020).

The results indicate 1.298 Mha (million hectares) of irrigated rice in Brazil, with 92.8% of the area in the three largest producers: Tocantins (8.4%), Santa Catarina (11.5%) and, mainly, Rio Grande do Sul (72.9%). The area currently identified in the 2019/20 harvest represents a reduction of 16% in relation to the data consolidated by the Irrigation Atlas for the year 2015 (1.544 Mha). This difference is mainly due to the reduction of 255 thousand ha of irrigated area in Rio Grande do Sul.

Sugar cane has peculiar irrigation management characteristics. In many regions with sugarcane in Brazil, climatic conditions favor the development of the crop without irrigation. However, significant expansions have been observed in areas with higher water deficiency, leading to an increased need for supplementary irrigation. In areas with lower water deficiency, irrigation use has also intensified to increase productivity or to disperse effluents from industrial processes (especially vinasse) in line with the most recent environmental regulations, which do not allow dispersion directly into water bodies.

The crop has high resilience to water stress, meaning productivity is reduced but not economically unviable. Irrigation practices can mitigate negative impacts from prolonged droughts and increase the longevity of the sugarcane plantation, i.e., the planned reformation time of 5 or 6 years can even double.

The adoption of irrigation faces economic and environmental constraints. However, all sugar mills in the country have irrigation equipment (reels, mainly) for application in sugarcane, vinasse and wastewater crops from ethanol and sugar production processes, a process known as fertigation. In regions with greater water deficit, this industrial process reuse is combined with water from other sources, allowing for higher water applications (rescue irrigation). In regions with even more pronounced deficits, production is only viable with more extensive irrigation (supplementary or full), also used by mills that decide to invest in gaining productivity and quality.

Thus, sugarcane presents different irrigation management practices: fertigation, which essentially consists of the agronomic reuse of agro-industrial process effluents (vinasse and wastewater), predominant in water-deficient areas of up to 800 mm per year in the Central-South; rescue irrigation, where fertigation occurs mixed or combined with low volumes of water abstracted from springs, predominant in areas with water deficiency higher than 800 mm/year in the Northeastern Forest Zone; and supplementary and full irrigation, which occur in areas with high water deficit, such as the semiarid region, or in mills that decide on such investment.

Currently, sugarcane has 3.60 million hectares (Mha) equipped for irrigation - the majority (2.9 Mha or 79.5%) only receives fertigation. Another 749 thousand hectares (20.5%) are irrigated with water from springs. In irrigation itself, rescue irrigation accounts for 76% of the area, while supplementary and full irrigation areas account for 24%. With vary-
Irrigated coffee farming has been growing and gaining importance in the national scenario in recent years. In the 2019 harvest, Brazil cultivated 1,825 Mha (IBGE, 2020), with a significant portion in small properties, making it the country’s main perennial crop. With approximately 25% of this area under irrigation, it is also the primary irrigated perennial crop. While historically coffee has been and continues to be cultivated under rainfed conditions in the more humid regions of the forest zone in Southeast of Minas Gerais and in the Central-North of São Paulo, irrigated coffee farming is expanding and gaining socio-economic importance in other regions.

In the Central-North region of Espírito Santo, Central-East region of Rondônia and in Southern Bahia, irrigated Coffea canephora (Robusta and Cimelon varieties) under drip and micro-sprinkler systems is already a reality for between 50 and 70% of crops. In Minas Gerais, irrigated coffee farming is more densified in the Southwest region, near the Triângulo Mineiro, but also occurs in the South and Central-North of the state, using diverse irrigation systems. In Goiás and Distrito Federal, regions with a dry climate between May and September, coffee farming occurs using center-pivot irrigation, with the predominance of the Coffea arabica species.

In Rondônia, coffee farming has demonstrated significant dynamism: over the past five years, rainfed plantations have been extensively replaced by irrigated clonal coffee, a technological package that has significantly increased productivity and stimulated the agricultural economy of the state, where coffee farming is predominantly found in small family-owned properties.
In Minas Gerais, the mapping was carried out by Emater/MG in collaboration with ANA and Conab. This involved visual interpretation of satellite images from Landsat 8, RapidEye, and Sentinel, followed by extensive field validation by technicians from Emater/MG. For other states, estimates derived from the Systematic Agricultural Production Survey (LSPA/IBGE), Municipal Agricultural Production (WFP/IBGE) and the Agricultural Census were adopted. In Rondônia, a qualitative assessment was conducted in collaboration with professionals from Emater, Embrapa, and Conab involved in technical assistance, research, and support for coffee farming in the state.

The survey consolidated by the Atlas identified 449.3 thousand hectares of irrigated coffee in Brazil (0.449 Mha) – constituting 25% of the area dedicated to the crop. In relative terms, Espírito Santo leads with 46.2% of the irrigated area, followed by Minas Gerais (29.9%), Bahia (10.2%), Rondônia (9.6%), São Paulo (2.0%) and Goiás (1.7%). Proportionally to the total area (rainfed + irrigated), Goiás is more dependent on irrigation (almost 100% of coffee plantations), followed by Espírito Santo and Rondônia (60 to 70% of coffee plantations are irrigated) and Bahia (40%). Minas Gerais, responsible for 50% of the national production, has 14% of its coffee plantations irrigated, while São Paulo has only 4%.

Center pivots irrigation systems irrigate a wide variety of crops, but there is a concentration of their use in the production of beans, corn, soybeans, cotton, and, to a lesser extent, wheat and potatoes. A single pivot can carry out up to three crops in the same year (main crop and off-season) or main season and a second long-duration or winter season. There are also examples of different crops simultaneously grown on the same pivot. Therefore, specific crops cannot be attributed to center-pivot systems as they involve a consortium, which varies both intra and interannually based on market conditions, water availability, and various decisions made by producers. Typology that leads the growth in irrigation in recent years, center-pivot systems have been regularly mapped by ANA and Embrapa. The second edition of the Survey of Irrigated Agriculture using Center Pivots in Brazil (ANA & Embrapa, 2019), revised and expanded, presents a historical series of mapping from 1985 to 2017. For the second edition of the Irrigation Atlas, this survey was updated for 2019, following the published methodology and with new improvements (including the analysis of vegetation index series within the center-pivot mask).

In 2019, 1,556 Mha irrigated using center pivots were identified, with 1,111 thousand hectares used for sugarcane (67.7 thousand ha) or coffee (43.4 thousand ha). Thus, 1,445 Mha are occupied by temporary crops that vary intra and inter-annually. These crops are concentrated in well-defined regions, notably in Minas Gerais (28.8%), Goiás (17.3%), São Paulo (14.0%), Bahia (14.0%), Rio Grande do Sul (9.3%) and Mato Grosso (8.7%). The current area is 50 times larger than the area mapped in 1985 and all these states show significant growth in the medium and short term – Mato Grosso and Rio Grande do Sul are growing at a faster pace than the others, leading to the emergence of national irrigation hubs and a greater participation of these two states in the national total (7% in 2006, 11% in 2010.

The other crops irrigated using other methods/systems are also diverse. Crops predominantly irrigated by central pivots are also irrigated by other systems (such as soy, corn, beans, cotton) on small properties and are included in this typology. Among the main ones, citrus irrigation stands out (orange, lemon, and tangerine), covering about 85 thousand hectares; banana (65 thousand hectares); tomato (45 thousand hectares); mango (44 thousand hectares); melon and watermelon (62 thousand hectares). Concomitantly, passion fruit, papaya, grape, guava, and black pepper together occupy approximately 100 thousand irrigated hectares. In other words, fruit and vegetable products predominate in this typology, which are proportionally more irrigated (70 to 90%) of the cultivated area) than the main irrigated crops in absolute numbers (grains).

Brazil is one of the main exporters of fruit and irrigation contributes to productive security and product quality. According to the 2020 Brazilian Yearbook of Horticulture & Fruit-growing (Carvalho et al., 2019), in 2019, more than 980 thousand tons of fruits were shipped (+10% compared to 2018) – melon...
is the most exported in volume, while mango leads in value. Grapes, lemons, lime, papaya, watermelon, apples, bananas and avocado also stand out in exports. Noteworthy is the irrigated production in the São Francisco Valley (the largest hub in the region between Petrolina/PE and Juazeiro/BA), Ceará, and Rio Grande do Norte. However, other states also have significant irrigation, such as São Paulo in citrus irrigation and Espírito Santo in papaya irrigation.

Conventional sprinkler irrigation, and especially sprinkling and drip irrigation, are the primary methods/systems associated with this typology. To a lesser extent, and localized systems (microsprinklers) are also included. The area of the other crops and systems typology was estimated using results of the National Irrigated Agriculture Hubs study (ANA, 2020), supplementary mapping carried out by ANA for the Atlas (effort concentrated in the Semiarid region), mapping carried out by ADASA for the Federal District (ADASA, 2020) and information from the Agricultural Census of IBGE. In regions with discrepancies between data sources, municipalities and state entities (EMATER, Secretariats, etc.) were also consulted in search of qualitative and quantitative information that would assist in defining the municipal irrigated area.

As a result, 1,346 Mha irrigated land were identified, concentrated in the North-Northeast and in Northern Minas Gerais; and also scattered around consumer markets (urban agglomerations). Among the states, notable contributors to this typology include Minas Gerais (19.0% of the irrigated area in this category), Bahia (15.7%), São Paulo (15.2%), Mato Grosso (6.2%), Pernambuco (6.1%) and Ceará (4.7%). When grouping the typologies detailed above, Brazil totals 8.2 million hectares equipped for irrigation - 35.3% (2.9 Mha) with fertigation with reused water and 64.5% (5.3 Mha) with irrigation using water from other sources.
Maps of total irrigated area and occupation density highlight the main concentration features in municipalities and national irrigation hubs.

Considering the distribution of irrigated areas themselves (excluding fertigated), Brazil totals 5.3 million hectares equipped for irrigation. Rice occupies 25% of the total; sugarcane, 15%; coffee, 8%; annual crops under center pivots, 27%; and other crops and systems, 25%. The geographical distribution among the states is diverse and is expected to change in the future as differentiated growth is estimated among these typologies and different potentials emerge in the national territory.
In addition to municipality and typology estimates presented previously, the Atlas sought to model, in an unprecedented manner, the presence of irrigated and fertigated areas in the river basins - a scale more suitable for estimates of water balance in water sources (supply vs. demand).

In this process, the Multiscale Otthocoded Hydrographic Base 2017 5k (BHOSk) produced by ANA was adopted, which subdivides the Brazilian territory into approximately 400 thousand river basins (or ottobasins), representing the contribution areas of each segment of the drainage network.

These results provide more localized details about the presence of irrigated agriculture within municipalities and their hydrographic sub-basins, allowing for greater advancements in estimates of the potential expansion of irrigated areas and associated water use - topics that will be explored in detail in the following chapters.
Public Projects

Important expressions of regional development initiatives, notably in the Brazilian Semiarid region, public projects remain important local and regional irrigation hubs, focusing mainly on the Semiarid region (region with low water availability).

Currently, the projects irrigate about **200 thousand hectares in 79 projects and 88 municipalities**. The largest part of the perimeters is the responsibility of DNOCS or Codevasf.

In 2003/04, the irrigated area in public perimeters was 162.1 thousand ha (SRH/MMA, 2006), rising to 173 thousand ha in 2007. The result in 2019 indicates, therefore, that the expansion of areas in operation has been less than 3 thousand hectares per year, on average, in the last decade. The pace is much lower than that recorded by the private sector, despite the high investments made in recent years to modernize projects, especially to replace methods and irrigation systems with other more efficient ones, especially surface with pressurized irrigation (usually micro-sprinklers and localized). Due to this situation, the public irrigation perimeters reduced their participation in the country’s irrigated area from 4.7% in 2003/04 (SRH/MMA, 2006) to 2.4% in 2019.

There are still about 100 thousand hectares of areas implemented in public projects, but that did not produce in 2019. The implemented area presents the irrigable area already contemplated with all the irrigation infrastructure works for common use that are necessary at the beginning of the operation, but that face various difficulties to be effectively occupied.

Among the 79 projects with production in 2019, the 34 that produced more than one thousand hectares totaled 176 thousand ha (90% of the total area). The following tables present the main project data, such as location, occupied area and responsible entity; main crops, irrigation systems and associated infrastructure.

It is observed that, due to the relationship between the implemented area and cultivated area, many perimeters also have a large capacity for expansion in the short term, such as those of Jaíba/MG, Formoso/BA, Tabuleiros de Russas/CE and Baixo Acaraú/CE. Other perimeters, on the other hand, already make greater use of their implemented area under cultivation, such as those of Senador Nilo Coelho/PE, Luiz Alves do Araguaia/GO and Platôs de Neópolis/SE.

Based on data from the perimeters under the responsibility of Codevasf, it is estimated that every 100 irrigated hectares in production generate 116 direct jobs and 172 indirect jobs. Thus, it is estimated that the perimeters are responsible for about **580 thousand jobs** (40% direct and 60% indirect).

The emancipation of the projects, i.e., transferring management to producers with economic, political and social sustainability, has been a challenge for producers and responsible institutions. Many projects were conceived without the complete local productive arrangement or the institutional arrangement necessary for long-term sustainability.

In modern management, Supply Driven infrastructure, i.e., infrastructure primarily designed to induce development based on the water supply, must be preceded by a complete regional development plan, as recommended by the National Water Security Plan (ANA & MDR, 2019), followed by a strategy to implement the local productive arrangement with the other links in the production chain (from inputs to consumers).
Public projects: location, occupied area, production value and responsible entity

<table>
<thead>
<tr>
<th>Public Project</th>
<th>Start of Operations</th>
<th>Municipality/ Municipalities</th>
<th>State</th>
<th>Total area (ha)</th>
<th>Irrigated area (ha)</th>
<th>Area in production</th>
<th>VBP (millions BRL)</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arroio Duro</td>
<td>1967</td>
<td>Camarolândia</td>
<td>RS</td>
<td>58,623</td>
<td>20,406</td>
<td>20,406</td>
<td>BRL 181</td>
<td>MDR</td>
</tr>
<tr>
<td>Formoso River</td>
<td>1980</td>
<td>Formoso Araguaí</td>
<td>TO</td>
<td>27,787</td>
<td>23,000</td>
<td>20,000</td>
<td>BRL 250</td>
<td>State of Tocantins</td>
</tr>
<tr>
<td>Sítio Nilo Coelho</td>
<td>1984</td>
<td>Caia de Nova, Pato Branco</td>
<td>BA/PB</td>
<td>55,625</td>
<td>23,486</td>
<td>21,797</td>
<td>BRL 1,555</td>
<td>Codevasf</td>
</tr>
<tr>
<td>Tocantins</td>
<td>1979</td>
<td>Juazeiro</td>
<td>BA</td>
<td>14,567</td>
<td>14,677</td>
<td>14,677</td>
<td>BRL 134</td>
<td>Codevasf</td>
</tr>
<tr>
<td>Jaló - Stile</td>
<td>1975</td>
<td>Jaló, Mato Grosso</td>
<td>MG</td>
<td>32,754</td>
<td>21,889</td>
<td>13,348</td>
<td>BRL 248</td>
<td>Codevasf</td>
</tr>
<tr>
<td>Formoso (BA)</td>
<td>1989</td>
<td>Bom Jesus da Lapa</td>
<td>BA</td>
<td>15,505</td>
<td>11,772</td>
<td>8,337</td>
<td>BRL 246</td>
<td>Codevasf</td>
</tr>
<tr>
<td>Vasco da Gama</td>
<td>1985</td>
<td>Arroio Grande</td>
<td>RS</td>
<td>25,738</td>
<td>19,619</td>
<td>7,314</td>
<td>BRL 14</td>
<td>MDR</td>
</tr>
<tr>
<td>Itaquera</td>
<td>1989</td>
<td>Florestas</td>
<td>SE</td>
<td>10,432</td>
<td>7,220</td>
<td>8,660</td>
<td>-</td>
<td>State of São Paulo</td>
</tr>
<tr>
<td>Jaguaribe</td>
<td>1989</td>
<td>Limeira do Norte</td>
<td>CE</td>
<td>9,606</td>
<td>6,658</td>
<td>6,658</td>
<td>BRL 31</td>
<td>DNOCS</td>
</tr>
<tr>
<td>Baião Açu</td>
<td>2001</td>
<td>Bela Vista, Aquiraz</td>
<td>CE</td>
<td>13,909</td>
<td>8,439</td>
<td>5,277</td>
<td>BRL 65</td>
<td>DNOCS</td>
</tr>
<tr>
<td>Cortaçá (PB)</td>
<td>1998</td>
<td>Santa Maria da Boa Vista, Guaíra</td>
<td>PE</td>
<td>33,437</td>
<td>4,728</td>
<td>4,728</td>
<td>-</td>
<td>Codevasf</td>
</tr>
<tr>
<td>Curuçá</td>
<td>1980</td>
<td>Juazeiro</td>
<td>BA</td>
<td>15,234</td>
<td>4,708</td>
<td>4,708</td>
<td>BRL 160</td>
<td>Codevasf</td>
</tr>
<tr>
<td>Betume</td>
<td>1978</td>
<td>Própria, Cedro do São João, Teimã</td>
<td>SE</td>
<td>8,481</td>
<td>4,671</td>
<td>4,671</td>
<td>BRL 9</td>
<td>Codevasf</td>
</tr>
<tr>
<td>Morroço</td>
<td>1980</td>
<td>Juazeiro</td>
<td>BA</td>
<td>11,786</td>
<td>4,847</td>
<td>3,913</td>
<td>BRL 156</td>
<td>Codevasf</td>
</tr>
<tr>
<td>Salitre</td>
<td>1998</td>
<td>Juazeiro</td>
<td>BA</td>
<td>67,400</td>
<td>5,099</td>
<td>3,601</td>
<td>BRL 79</td>
<td>Codevasf</td>
</tr>
<tr>
<td>Luiz Alves do Araguaí</td>
<td>2000</td>
<td>São Miguel do Araguaí</td>
<td>GO</td>
<td>8,148</td>
<td>2,742</td>
<td>2,742</td>
<td>BRL 24</td>
<td>State of Goias</td>
</tr>
<tr>
<td>Curu Passa-jaba</td>
<td>1974</td>
<td>Parajá</td>
<td>CE</td>
<td>6,913</td>
<td>3,337</td>
<td>2,733</td>
<td>BRL 16</td>
<td>DNOCS</td>
</tr>
<tr>
<td>Boa Vista</td>
<td>1984</td>
<td>Igreja Nova</td>
<td>AL</td>
<td>5,484</td>
<td>2,762</td>
<td>2,299</td>
<td>BRL 14</td>
<td>Codevasf</td>
</tr>
<tr>
<td>Icó-Mandantes</td>
<td>1994</td>
<td>Petrolândia</td>
<td>PE</td>
<td>26,097</td>
<td>2,187</td>
<td>2,187</td>
<td>-</td>
<td>Codevasf</td>
</tr>
<tr>
<td>Biax Açu</td>
<td>1994</td>
<td>Ipanema, Afonso Bezerra, Aço do Rodrigues</td>
<td>RN</td>
<td>6,000</td>
<td>5,168</td>
<td>2,099</td>
<td>-</td>
<td>DNOCS</td>
</tr>
<tr>
<td>Plataforma Guadalupe</td>
<td>1993</td>
<td>Guadalupe</td>
<td>PI</td>
<td>16,879</td>
<td>3,196</td>
<td>2,080</td>
<td>BRL 36</td>
<td>DNOCS</td>
</tr>
<tr>
<td>Tabuleiros de Russas</td>
<td>2004</td>
<td>Russas, Limeira do Norte</td>
<td>CE</td>
<td>18,915</td>
<td>10,766</td>
<td>2,055</td>
<td>BRL 42</td>
<td>DNOCS</td>
</tr>
<tr>
<td>São Desidério/ São José do Rio Preto</td>
<td>1978</td>
<td>São Desidério, São José do Rio Preto</td>
<td>BA</td>
<td>4,322</td>
<td>1,934</td>
<td>1,934</td>
<td>BRL 5</td>
<td>Codevasf</td>
</tr>
<tr>
<td>Bebedouro</td>
<td>1968</td>
<td>Petrolina</td>
<td>PE</td>
<td>7,484</td>
<td>2,418</td>
<td>1,892</td>
<td>BRL 49</td>
<td>Codevasf</td>
</tr>
<tr>
<td>Cotinguiba/Pinheira</td>
<td>1982</td>
<td>Neópolis, Japonatii, Própria</td>
<td>SE</td>
<td>3,086</td>
<td>2,232</td>
<td>1,708</td>
<td>BRL 6</td>
<td>Codevasf</td>
</tr>
<tr>
<td>Mimosó</td>
<td>1996</td>
<td>Guadará</td>
<td>BA</td>
<td>4,870</td>
<td>1,772</td>
<td>1,701</td>
<td>BRL 20</td>
<td>Codevasf</td>
</tr>
<tr>
<td>Gurujá</td>
<td>1978</td>
<td>Nova Foiçal</td>
<td>MG</td>
<td>8,487</td>
<td>4,800</td>
<td>1,683</td>
<td>BRL 34</td>
<td>Codevasf</td>
</tr>
<tr>
<td>Várzeas de</td>
<td>2006</td>
<td>Sousa, Aparecida</td>
<td>PB</td>
<td>6,336</td>
<td>4,404</td>
<td>1,600</td>
<td>BRL 5</td>
<td>State of Pará</td>
</tr>
</tbody>
</table>

Sources:
Compilation based on data from the MDR, SSIP/RM, Nilo Coelho Irrigation District (DHIC), Codevasf and DNOCS.

Notes:
- Reference year of the information: 2018/2019
- VBP: Product value of production (annual), in millions of reais.
- Total Area: includes permanent preservation areas - APPs, legal reserve and infrastructure for common use, in addition to the irrigated and rainfed area.
- Irrigable Area Implemented: area where all the infrastructure works (of common use irrigation and parcel irrigation and drainage systems, in the case of lots destined to small-scale irrigators) necessary to start the project's operation and the agricultural production of the plots are concluded:
- Area in Production: irrigated implemented area that is being effectively used for agricultural exploitation.
Public projects: crops, irrigation systems and infrastructure

<table>
<thead>
<tr>
<th>Public Project</th>
<th>Main crops</th>
<th>Main Systems</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arroio Duro</td>
<td>Rice</td>
<td>Flooding</td>
<td>-</td>
</tr>
<tr>
<td>Formoso River</td>
<td>Rice</td>
<td>Flooding and subsurface</td>
<td>-</td>
</tr>
<tr>
<td>Serado II Coelho</td>
<td>Mango (43%), grape (24%), coconut (11%), banana (8%), guava (7%)</td>
<td>Micro-sprinkler, spraying and drip</td>
<td>976 km of channels; 818 km of pipelines; 711 km of roads; 263 km of drains; 39 pumping stations</td>
</tr>
<tr>
<td>Tourão</td>
<td>Sugarcane (19%) and lower fruit production</td>
<td>Surface, drip, micro-sprinkler and spraying</td>
<td>65 km of channels; 45 km of drains; 42 km of roads; 5 pump stations</td>
</tr>
<tr>
<td>Jalba - Stage I</td>
<td>Permanent crops occupy 79% of the area. More than 50% of fruit-growing, highlighting lemon, mango and banana</td>
<td>Micro-sprinkler and sprinkling</td>
<td>548 km of channels; 385 km of buildings; 533 km of roads; 3 km of drains; 11 pumping stations</td>
</tr>
<tr>
<td>Formoso (BA)</td>
<td>91% banana</td>
<td>Micro-sprinkler and sprinkling</td>
<td>286 km of channels; 175 km of pipelines; 148 km of roads; 120 km of drains; 23 pumping stations</td>
</tr>
<tr>
<td>Chavesqueiro</td>
<td>Rice</td>
<td>Flooding</td>
<td>-</td>
</tr>
<tr>
<td>Plata de Neópolis</td>
<td>Sugarcane (~50%) and fruit-growing, especially coconut (~25%)</td>
<td>Micro-sprinkler</td>
<td>-</td>
</tr>
<tr>
<td>Jaguaribe Apodi</td>
<td>Permanent crops occupy 23% (banana 17%), Temporary crops occupy 77%</td>
<td>Center pivot (predominant), micro-sprinkler and drip</td>
<td>-</td>
</tr>
<tr>
<td>Baixo Acreú</td>
<td>Permanent crops occupy 64% (coconut 26%, banana 11% and orange 10%), Temporary crops occupy 36% (watermelon 8%),</td>
<td>Micro-sprinkler and drip</td>
<td>-</td>
</tr>
<tr>
<td>Caraíbas/Fulgence</td>
<td>Permanent crops occupy 71%, with fruit-growing predominating, banana occupied 56% of the area.</td>
<td>Spraying</td>
<td>39 km of channels; 200 km of roads; 1206 km of drains</td>
</tr>
<tr>
<td>Curaçá</td>
<td>Mango 57%, coconut (20%) and grape (13%)</td>
<td>Micro-sprinkler and sprinkling</td>
<td>165 km of channels; 167 km of drains; 172 km of roads; 11 pumping stations</td>
</tr>
<tr>
<td>Betume</td>
<td>Rice (100%)</td>
<td>Surface 100%</td>
<td>148 km of irrigation network; 134 km of drains. 88 km of roads; 24.8 km dikes; 9 pumping stations (only 4 for irrigation)</td>
</tr>
<tr>
<td>Maniçoba</td>
<td>Predominance of mango (39%), grape (34%) and sugarcane (20%)</td>
<td>Surface, spraying, micro-sprinkler and, to a lesser extent, drip</td>
<td>156 km of channels; 8 km of pipelines; 97 km of drains; 223 km of roads; 4 pumping stations</td>
</tr>
<tr>
<td>Salitre</td>
<td>Banana, onion, sugarcane, mango, guava and coconut</td>
<td>Drip, surface and micro-sprinkler</td>
<td>41.57 km of channels; 119.5 km of drains; 116.3 km of pipelines; 6 pump stations (BB); and 8 reservoirs</td>
</tr>
<tr>
<td>Brumado</td>
<td>Mango (92%)</td>
<td>Conventional sprinkling, micro-sprinkler</td>
<td>7 km of addition channels; 7.6 km of primary channels; 31.5 km of drains and 8.4 km of main roads</td>
</tr>
<tr>
<td>Cuxu-Paraipaba</td>
<td>Permanent crops occupy 91%, with a predominance of coconut (86%)</td>
<td>Spraying (main), micro-sprinkler, drip and center pivot</td>
<td>8 pumping stations; 84 km of addition channels; 70 km of main drainage channel; 17.09 km of main road</td>
</tr>
<tr>
<td>Lut ALves do Araujo</td>
<td>Rice, melon, pumpkin, watermelon, corn and soy</td>
<td>Flooding and subsurface</td>
<td>-</td>
</tr>
</tbody>
</table>

Sources: Compilation based on data from MDR, SIGPI/MI, São Coelho Irrigation District (DINC), Codevasf and DNOCS. Notes: Reference year of the information: 2018/2019

In Codevasf projects, the percentages of the main crops refer to the gross production value, except when expressed as a percentage of occupied area.
The analysis of the potential for expansion and intensification of irrigated agriculture combines explanatory variables in an attempt to point out areas that can be used in irrigated agriculture. They tend to focus on physical and environmental aspects and lack the application of robust economic models, as well as field research, but provide perspectives and direction for both the private sector and public policies.

Within the scope of the National Irrigation Program – PRONI, the mapping of Potential Concentration Areas for Irrigated Agriculture was published in 1987, carried out by the National Institute for Space Research (INPE) and the Foundation for Space Science, Technology and Applications (FUNCATE) and in 2009, recovered and digitized in partnership with the Ministry of Integration with the Geological Survey of Brazil. The original work comprised the Central-South region and involved an analysis of satellite images, consolidation of cartographic bases, fieldwork and overflight surveys.

The survey established a classification of arable land and its classification into categories of greater or lesser potential for irrigated agriculture, however, it does not provide spatially explicit information on water availability for irrigation, it is instead more focused on the quality of land for agriculture in general (BRASIL, 2014).

Also in the scope of PRONI, in 1989, studies were carried out to prioritize areas for private irrigation in the Northeast region. Based on information on soil and water potential, and agricultural and socioeconomic factors, a potential 362 thousand ha were identified to develop private irrigation in the region (BRASIL, 2006) - concentrated in the Parnaíba river valley (PI/MA – 113 thousand ha) and its tributary Balsas river (MA – 54 thousand ha); and in the upper-middle São Francisco river valley (MG/BA – 75 thousand ha).

Later, in the late 1990s, studies conducted by the Water Resources Department of the Ministry of Environment estimated 29.56 million hectares with potential soil for irrigation development, of which about 50% would be in the North. This assessment considered the suitability of the soils (classes 1 to 4), the availability of water and compliance with the environmental legislation at the time.

In 2014, the Ministry of National Integration, currently MDR, published the study Territorial Analysis for the Development of Irrigated Agriculture in Brazil (BRASIL, 2014) in partnership with USP/ESALQ, which assessed the additional irrigable area of the country using ottobasins (micro-basins) as a territorial unit of analysis. The procedure for calculating the irrigable area was similar to that used in the sizing of irrigation projects in the field, taking into consideration: (i) the water demand of the reference crops (corn and beans); (ii) the quantitative balance between water uses and surface water availability; (iii) and the area available for agricultural activities. To define the territorial classes, other aspects were also analyzed, such as land dynamics, logistical quality and environmental importance.
This 2014 study was adapted and used as a reference in the first edition of the Irrigation Atlas. The total potential was estimated at 76.19 million hectares (Mha), distributed in soil-relief suitability classes: 21.80 Mha of additional irrigable land with high suitability; 25.86 Mha with medium suitability; and 28.53 Mha with low suitability. The Midwest stood out for its concentration of 43.1% of additional irrigable areas with high suitability in Brazil.

Based on the modified study database, an indicator of effective expansion potential was prepared for the 2017 Atlas, only considering areas with high or medium soil suitability; high relief suitability; high logistic quality (existence of production flow and electric power); exclusion of other environmental protection areas; and territorial classes that indicate irrigation expansion, i.e., combinations in which there is both the potential for additional expansion and already established irrigated agriculture (referring to the presence of infrastructure, support services, technology, and technical assistance). This potential was estimated at 11.12 Mha, concentrated in the Central-South of Brazil, explaining more precisely the potential for expansion in the short and medium term.

The current methodology is based on the consolidation of land use maps, and only consolidated agricultural uses are considered eligible for irrigation, i.e., without considering the opening of new areas, even if they meet current legislation. This assumption is justified both by sustainability (not predicting new use conversions) and by water availability limits – local springs sustainably support the irrigation of only part of the current agricultural area of 248.6 million hectares (73.9 Mha of agriculture and 174.7 Mha of pastures).

The adoption of surface water irrigation on rainfed agricultural areas was named intensification; the potential conversion of pastures to irrigated agriculture was named expansion. In addition, in order to support the regions with the greatest surface water limitation, the remaining agricultural areas (rainfed + pastures) that could expand with groundwater were estimated.

The second component of the methodology refers to the water demand of reference crops (rice, sugarcane, beans and corn), estimated in the micro-basins based on the consolidated use, the climatological water balance and technical criteria for conversion into the project flow rate. The water demand was simulated for the 36 periods in the year (every 10 days), adopting the most critical period as the reference, i.e., the period of lowest water satisfaction and maximum Kc (blooming period, in the case of annual crops). These criteria are capable of guiding the sizing of the irrigation system with greater certainty - a similar procedure is adopted in the assessment of projects for the purpose of granting water use for irrigation.

The Territorial Analysis for the Development of Irrigated Agriculture in Brazil was updated between 2019 and 2020 in a new joint effort by ANA along with the MDR and USP/ESALQ (Public Policy Group - GPP). More updated databases, more refined technical criteria and more explicit water balance simulations of water from surface and underground springs were adopted. The update is part of, simultaneously, the Immediate Action Plan of Irrigated Agribusiness in Brazil (in preparation by the MDR) and the new edition of the Irrigation Atlas.

The third block of the methodology consolidates the previous steps (flow rate needed to irrigate the entire agricultural and pasture area available in the micro-basin). The already irrigated areas are subtracted, but the areas that have only been fertigated are not excluded from the potential, and can be intensified with irrigation itself.

Next, the water balance in the springs is simulated (potential demand x water supply ratio in the rivers). The supply is characterized by the reference flow with 95% guarantee (Q95) obtained from series of daily flows observed in flow stations or series of flows modeled in specific places. Before the simulation, the already installed demand for irrigation and the current and projected demands of the other water uses (urban and rural human use, animal supply, industry, mining and thermo-electricity) are subtracted.

Additionally, the study produced other indicators that guide complementary analyses of effective potential, such as soil-relief suitability and infrastructure (energy, road and rail transport and storage capacity of agricultural products).

As a result, an additional irrigable area in Brazil of 55,851 Mha, 26,69 Mha on areas with rainfed agriculture (36% of the consolidated agriculture area). Another 26,73 Mha can be irrigated over pasture areas (15% of the consolidated pasture area).

Additional Irrigable Area - Territorial Modeling

- **Land use** (current agricultural use)
- **Agricultural suitability** (soil, climate, topography)
- **Demand (project flow) of reference crops** - Climate water balance
- **Other water uses** (current and projected)
- **Water Availability and Water Balance of the springs** (demand x supply)
- **Infrastructure** (energy, transport and storage)

Additional irrigable area (total and effective potential) - by Region and State

<table>
<thead>
<tr>
<th>Region / State</th>
<th>Surface water</th>
<th>Groundwater</th>
<th>Total</th>
<th>Total (%)</th>
<th>EFFECTIVE POTENTIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intensification in agriculture</td>
<td>Expansion in pasture</td>
<td>Total</td>
<td>(1,000 ha)</td>
<td>(%)</td>
</tr>
<tr>
<td>NORTH</td>
<td>797</td>
<td>10,142</td>
<td>347</td>
<td>11,287</td>
<td>20.2%</td>
</tr>
<tr>
<td>AC</td>
<td>0</td>
<td>691</td>
<td>0</td>
<td>691</td>
<td>1.2%</td>
</tr>
<tr>
<td>AM</td>
<td>7</td>
<td>1,420</td>
<td>7</td>
<td>1,434</td>
<td>2.6%</td>
</tr>
<tr>
<td>AP</td>
<td>26</td>
<td>70</td>
<td>4</td>
<td>99</td>
<td>0.2%</td>
</tr>
<tr>
<td>PA</td>
<td>230</td>
<td>4,267</td>
<td>181</td>
<td>4,678</td>
<td>8.4%</td>
</tr>
<tr>
<td>RO</td>
<td>159</td>
<td>2,240</td>
<td>99</td>
<td>2,347</td>
<td>4.5%</td>
</tr>
<tr>
<td>RR</td>
<td>14</td>
<td>207</td>
<td>2</td>
<td>224</td>
<td>0.4%</td>
</tr>
<tr>
<td>TO</td>
<td>361</td>
<td>1,248</td>
<td>54</td>
<td>1,663</td>
<td>3.0%</td>
</tr>
<tr>
<td>NORTHEAST</td>
<td>1,112</td>
<td>2,104</td>
<td>101</td>
<td>3,321</td>
<td>5.9%</td>
</tr>
<tr>
<td>AL</td>
<td>22</td>
<td>21</td>
<td>2</td>
<td>46</td>
<td>0.1%</td>
</tr>
<tr>
<td>BA</td>
<td>633</td>
<td>879</td>
<td>49</td>
<td>1,560</td>
<td>2.8%</td>
</tr>
<tr>
<td>CE</td>
<td>78</td>
<td>92</td>
<td>1</td>
<td>171</td>
<td>0.3%</td>
</tr>
<tr>
<td>MA</td>
<td>197</td>
<td>944</td>
<td>23</td>
<td>1,164</td>
<td>2.1%</td>
</tr>
<tr>
<td>PB</td>
<td>13</td>
<td>23</td>
<td>0</td>
<td>36</td>
<td>0.1%</td>
</tr>
<tr>
<td>PE</td>
<td>32</td>
<td>63</td>
<td>0</td>
<td>95</td>
<td>0.2%</td>
</tr>
<tr>
<td>PI</td>
<td>97</td>
<td>52</td>
<td>27</td>
<td>176</td>
<td>0.3%</td>
</tr>
<tr>
<td>RN</td>
<td>32</td>
<td>13</td>
<td>2</td>
<td>47</td>
<td>0.1%</td>
</tr>
<tr>
<td>SE</td>
<td>9</td>
<td>16</td>
<td>0</td>
<td>26</td>
<td>0.0%</td>
</tr>
<tr>
<td>SOUTHEAST</td>
<td>8,150</td>
<td>4,116</td>
<td>672</td>
<td>12,938</td>
<td>23.2%</td>
</tr>
<tr>
<td>ES</td>
<td>329</td>
<td>40</td>
<td>20</td>
<td>389</td>
<td>0.7%</td>
</tr>
<tr>
<td>MG</td>
<td>3,407</td>
<td>3,241</td>
<td>385</td>
<td>7,033</td>
<td>12.6%</td>
</tr>
<tr>
<td>RJ</td>
<td>826</td>
<td>265</td>
<td>72</td>
<td>618</td>
<td>1.1%</td>
</tr>
<tr>
<td>SP</td>
<td>4,088</td>
<td>570</td>
<td>239</td>
<td>4,898</td>
<td>8.6%</td>
</tr>
<tr>
<td>SOUTH</td>
<td>7,706</td>
<td>540</td>
<td>353</td>
<td>8,599</td>
<td>15.4%</td>
</tr>
<tr>
<td>PR</td>
<td>3,587</td>
<td>275</td>
<td>219</td>
<td>4,082</td>
<td>7.3%</td>
</tr>
<tr>
<td>RS</td>
<td>2,904</td>
<td>42</td>
<td>65</td>
<td>3,011</td>
<td>5.4%</td>
</tr>
<tr>
<td>SC</td>
<td>1,215</td>
<td>223</td>
<td>69</td>
<td>1,507</td>
<td>2.7%</td>
</tr>
<tr>
<td>MIDWEST</td>
<td>8,929</td>
<td>9,824</td>
<td>954</td>
<td>19,707</td>
<td>35.3%</td>
</tr>
<tr>
<td>DF</td>
<td>30</td>
<td>19</td>
<td>3</td>
<td>53</td>
<td>0.1%</td>
</tr>
<tr>
<td>GO</td>
<td>1,988</td>
<td>2,397</td>
<td>183</td>
<td>4,567</td>
<td>8.2%</td>
</tr>
<tr>
<td>MS</td>
<td>1,670</td>
<td>2,867</td>
<td>189</td>
<td>4,725</td>
<td>8.5%</td>
</tr>
<tr>
<td>MT</td>
<td>5,241</td>
<td>4,541</td>
<td>579</td>
<td>10,362</td>
<td>18.6%</td>
</tr>
<tr>
<td>BRAZIL</td>
<td>26,694</td>
<td>26,726</td>
<td>2,431</td>
<td>55,851</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: cells highlighted in green indicate the states with the highest participation in the total or effective potential.
The additional area over agricultural areas without surface availability, but with underground availability, is 2.43 Mha. With this, it is concluded that although the area is expressed in absolute numbers, only 22% of the area currently occupied with agriculture and pastures in Brazil can be irrigated due to limitations in the water availability of local springs.

As effective potential, which more explicitly specifies the short and medium term potential in the Brazilian territory, the areas of intensification on rainfed agriculture that have medium or high soil-relief suitability are considered; and the most favorable indicator of infrastructure (high class). In addition, current sugarcane areas with a climatic water deficit of less than 400 mm per year are excluded from the effective potential.

The effective potential is 13.7 Mha and is concentrated in the Midwest (45%), South (31%) and Southeast (19%). Among the states, Bahia, Goiás, Mato Grosso, Mato Grosso do Sul, Minas Gerais, São Paulo, Rio Grande do Sul and Santa Catarina have the greatest potential to increase irrigated areas. These regions already stand out for the strong growth of the area in recent years, especially Goiás, Bahia, Mato Grosso and Rio Grande do Sul.

The potential for irrigation (total and effective) must be observed with caution and is useful for the general planning, zoning and monitoring of the sector. Local particularities, infrastructure expansion and water infrastructure works can change the estimated additional irrigable area, especially when the water supply is increased through transfers from other basins. In addition, territorial modeling should be improved, in particular regarding water balance tools in springs and information on other current and projected water uses.

In addition to the expansion potential of irrigated areas, in order to estimate the priority regions and it is important to observe the medium-term trends, the prospects of harnessing this potential in the coming years. There are few indicators that point to trends in irrigation expansion in Brazil – indicators related to agriculture are usually aggregated with rainfed areas. As these areas are generally much higher than irrigated areas, the indicators do not characterize the dynamics of irrigated agriculture.

In order to make up for the lack of projections, the trend scenario for the growth of irrigated areas in the 2040 horizon is presented below. It is estimated that public policies and the conditions for financing and promoting irrigated agriculture...
will not change significantly in the medium term; or even that any more significant changes will not produce large-scale effects on the horizon considered. Thus, the trends observed in the recent past and the analysis of the current situation can be used for projections in the next 20 years. The same trends observed in the 2017 Atlas continue today, but the data presented in this edition allow the estimates to be refined.

A scenario of increasing fertigated areas was not considered, both because water is not directly abstracted from springs and because of the trend towards increasingly efficient agronomic reuse, through increased industrial efficiency (generating less effluent) and more optimized application techniques (such as vinasse concentration). It is estimated, therefore, that there will be changes in the geography of fertigation through the territory, but the total area will suffer little change, remaining close to 2.9 Mha in 2040.

The projections indicate the incorporation of 4.2 million hectares irrigated by 2040 – an average of 200 thousand hectares per year -, bringing the country closer to the total area of 12.4 million irrigated hectares. This increase corresponds to an increase of 51% over the current area (irrigated + fertigated) or 79% considering irrigated areas except fertigation. This increase also corresponds to the approval of 30% of the effective potential and only 7% of the total potential.

The most efficient methods of water use – localized irrigation (drip and micro-sprinklers) and center pivot sprinklers - should be responsible for about 75% of this growth. Conventional sprinklers and the reel (hydro roll) should also remain important in this expansion scenario. Surface irrigation methods (furrow, strip and flood) should continue in a downward trend, except for flooded rice, which shows a tendency to stabilize in the short term, but a tendency to increase in the long term in the main producing areas, especially with the recovery of areas in the South where rice suffered a retraction of 250 thousand ha in recent years.

Temporary crops grown under pivots will continue to lead the expansion of irrigation with about 100 thousand additional ha per year on average (30% of the growth). Rice, sugarcane and coffee should contribute an average of 40 thousand ha per year. Other crops, especially fruit-growing, should add up to between 50 and 60 thousand ha per year of expansion.

Thus, although all typologies show absolute growth, the relative participation will change. Disregarding fertigation, flooded rice tends to reduce its participation in area from 25% in 2019 to 17% in 2040; sugarcane will slightly reduce its participation from 14% to 12.1%, as well as coffee (from 8% to 6.5%); center pivots tend to increase their participation from 27% to 37.6%; and other crops in other systems should fluctuate from 25% to 26.9%. As for the latter group, it should be noted that the estimated growth balance should focus on localized irrigation and micro-sprinklers, while surface methods (furrow, strips and flooding, except rice) should show retraction (areas with deactivated irrigation or replaced with other methods).

The growth prospects are compatible with the time series analyzed, such as: irrigated areas of the Census of Agricultural (IBGE); crops and harvests with a high participation of irrigation in Municipal Agricultural Productions – PAM (IBGE); estimates of the equipment sales sector (CSEI/Abimaq, 2020); and sector projections for agribusiness (FIESP, 2019). CSEI/Abimaq (2020), for example, estimated an average annual increase of 211 thousand hectares in recent years (2011–2019), with a variation between 176 thousand ha in 2011 and 272 thousand ha in 2013. In 2019, the expansion was estimated at 210 thousand ha.

Although the estimated expansion is compatible with the recent rates, there are challenges for its continuation in the next 20 years, especially regarding credit, climate changes/variability, and the environmental and water support capacity of the irrigation hubs. There are, at the same time, opportunities to accept this expansion with sustainability, leading to a new level of growth of around 300 thousand ha per year, which could lead Brazil to incorporate 6 Mha by 2040 (43% higher than the 4.2 Mha projected in the trend scenario).
WATER USE

Context

Irrigation is a consumptive use of water, i.e., it changes its conditions as it is stored, removed from the environment and most of it is consumed through crop evapotranspiration, not returning directly to water bodies. Although the hydrological cycle is closed, this consumption means that water is unavailable for other uses at that location and time.

Currently, irrigation accounts for about 50% of the abstraction of raw water from surface and underground springs in Brazil (urban supply, for example, accounts for 24% of the total withdrawal). This share of irrigation is similar to that observed in the global average.

There are several techniques for calculating water demand for irrigated agriculture, the most common being the use of indirect methods based on the crop's water requirement at a given stage of development and in a given location. This type of estimation simplifies the processes that occur at the irrigated agriculture-hydrological cycle interface, based on the availability of climatic information and the characteristics of the crops and irrigation systems.

The climatic data informs the rainwater supply to the plants and the potential evapotranspiration of a region. For the current estimate, about 10 thousand rainfall stations (rainfall data) were consulted, of which 3,700 presented a relevant number of data consisted for use in the estimates. The number of meteorological stations was increased from 524 to 654 - the variables and the result of the calculation of potential evapotranspiration underwent a broad process of consistency in partnership between ANA and the Federal University of Paraná - UFPR. In the Atlas, estimates are presented both with the climate observed in the time series until 2019 and with the average climate obtained from these series.

Each crop needs an amount of water and this amount varies at each stage of development of the same crop. This information is aggregated to calculate the actual evapotranspiration of the crop, i.e., the water supply necessary for its physiological processes in that local climate. The climate and crop, along with information about the soil, help in estimating the availability of water in the soil and the effective precipitation (rainwater that the plant can effectively take advantage of). Irrigation aims to supplement what the plant needs, i.e., it complements what is provided by other sources (soil and rain).

Finally, it is necessary to know the efficiency of the irrigation system adopted to estimate the losses that occur between the volume of water collected and the volume of water used by the plant. Water use efficiency is addressed at the end of this chapter.
The calculation of water demand is complex - it involves dozens of variables, constants and equations that result in a need for specific irrigation of each crop in that place and period of the year, i.e., in the volume of water to be applied for crops to fully develop. These specific slides are then multiplied by the irrigated area - hence the importance of this variable in estimating water use.

More information on the methodology of the data can be found in the *Handbook of Consumptive Water Use in Brazil* (ANA, 2019) and in the *Technical Coefficients for Irrigated Agriculture in Brazil* (ANA, 2020). It should be noted that, in addition to the general method for all crops, ANA adopts methodological adaptations to estimate the demands of flooded rice and sugarcane, as they have different dynamics of water use and management.
Water use in flooded rice

In rice flooding, evaporation of the water blade is a critical factor to be considered in the calculation, as well as the different types of management—grouped in conventional and pre-germinated systems. In the first case, sowing is carried out in non-flooded soil, and flooding begins a few days after the plants emerge. In the pre-germinated system, irrigation begins before sowing, during the final soil preparation procedures. After this step, the height of the water blade is raised to a certain level and maintained until sowing, which occurs in flooded soil. Due to these peculiarities, it is considered in the frame filling and pre-seeding periods that the water demand is evaporation, since the crop is not yet established.

Considering an average cycle of 122 days, the conventional system requires between 80 and 100 days of irrigation until it is time to empty the trays and prepare for harvest. In pre-germination, irrigation starts about 25 days before sowing, totaling about 100 to 125 days of irrigation. Despite the difference in the number of days under irrigation, water consumption is equivalent, because the need for water replacement through percolation losses in the pre-germinated system is less than in the conventional system.

The water supply required for rice under flooding varies from 6 to 12 thousand m³ per hectare (flow rate of 0.7 to 1.75 liter per second per hectare) (SOSBAI, 2018). In the estimates made by ANA (2017), the national average is 8.9 thousand m³/ha. The conditions of management, soil, slope, climate and the selected cultivars condition different volumes of water applied by the producers. A longer cycle cultivar in sandier soil, with greater slope, in drier years will require more water, for example.

Water use in sugarcane

With regard to sugarcane, three different ways of managing water abstracted from springs are considered: full irrigation, supplementary irrigation, and salvage irrigation, the latter being the predominant one.

Full irrigation consists in the application of the water blade to supply the total water deficit of the crop, as calculated for the other crops. However, in the tenth month of the crop cycle, irrigation must be suspended to favor maturation, meaning a cut in water use. Additional irrigation consists of partially supplying the water deficiency (about 50%), in addition to also planning the irrigation cut in the tenth month of the cycle. Salvage irrigation, which accounts for more than 80% of the irrigated area of sugarcane, consists of the application of water in a relatively short period.

Salvage is performed with a reel (hydro roll) or with towable pivot and around 20 to 80 mm/year of blades are applied, in general after each annual cut of sugarcane, favoring its recovery, productivity and longevity. This management varies between plants and harvests - the average value obtained in the Atlas survey was 58 mm, distributed mostly in two applications after cutting.

Salvage is intermixed (mixed or alternated) with fertigation itself, which consists of the agronomic reuse of industrial effluents from the sugar and ethanol production processes. Due to this characteristic, it is not possible to accurately distinguish the volumes specifically abstracted and those of reuse applied in the salvage areas. On average, a 1:1 or 1:2 ratio occurs.

In the areas identified as fertigation, water demands are not estimated. These are presumably areas with reuse only - with the demand for abstraction already accounted for in the agro-industrial sector, there are mills working with concentrated vinasse around 2 to 4 mm and even mills that apply higher blades similar to those of salvage.

Irrigated and fertigated sugarcane area and average annual water

Fertigation with vinasse and wastewater is the result of integrated and dependent agricultural and industrial management decisions. The main purpose of this type of irrigation, widely used by the sugar and energy sector, is the rational use of the fertilizing potential of the industry's effluents and compliance with the sector's sustainability regulations and practices. Fertigation is carried out following technical criteria for sugarcane nutrition and specific environmental standards that regulate its adoption. This practice usually occurs through the application of small blades to reduce water stress and improve the conditions of growth and development of the sugarcane, notably after cutting; however, this effect is subtle in the vegetative vigor of the sugarcane in the satellite images analyzed, compared to neighboring areas where it was not applied.

The macro-flow of water in the agro-industrial process of sugar and ethanol production in Brazil is presented in the infographic. The reference values aim to portray standards found in the literature and in consultation with experts, but in specific industrial units the numbers may deviate significantly depending on the technologies used, good practices of use and reuse, proportion of ethanol and sugar production, among other factors.

The importance of the first group lies in the large application area that reaches 3.48 Mha (95% of the total) and the location of large areas on the Northeastern coast, in coastal river basins with less water availability. The group with the highest water intensity (deficit and full), although occupying only 5% of the area, is responsible for 56.7% of the water volume that is demanded from a restricted number of springs.

Fertigation with vinasse and wastewater is the result of integrated and dependent agricultural and industrial management decisions. The main purpose of this type of irrigation, widely used by the sugar and energy sector, is the rational use of the fertilizing potential of the industry's effluents and compliance with the sector's sustainability regulations and practices. Fertigation is carried out following technical criteria for sugarcane nutrition and specific environmental standards that regulate its adoption. This practice usually occurs through the application of small blades to reduce water stress and improve the conditions of growth and development of the sugarcane, notably after cutting; however, this effect is subtle in the vegetative vigor of the sugarcane in the satellite images analyzed, compared to neighboring areas where it was not applied.

In view of environmental standards, 100% of the discharge tends to be reused agronomically with reference values between 800 and 1,100 liters per
Water Demand

The water demand updated by the Atlas, assuming an average climate scenario in 2019, points to water use by irrigated agriculture of 965 m³/s - 941 m³/s are abstracted from springs (blue water) and about 24 m³/s represent the agronomic reuse of effluents (gray water) in sugarcane areas (fertigation and salvage).

Among the typologies adopted in the Atlas, rice demands 357 m³/s from springs (or 38% of the demand in 2019). The other systems and crops (class with high participation of Northeastern fruit-growing and horticulture) demand 276 m³/s (29%), followed by annual crops grown in center pivots.
(167 m³/s or 18%). Coffee (97 m³/s or 10%) and sugarcane (44 m³/s or 5%) complete the most relevant typologies of the national water demand.

In terms of water intensity (demand per hectare), rice, sugarcane irrigated by deficit or full, coffee and crops located in the Semiarid region provide proportionally more water than crops under pivots. Flooded rice management, although concentrated in only 300 to 120 days a year, is quite water-intensive, while the other cases are (semi)perennial crops, which need water supplementation throughout the year, and/or regions of lower water availability in the environment.

In the 2040 horizon, a greater participation of center pivots and localized irrigation (centered on the typology other crops and systems) in the demands of irrigated agriculture is expected. These methods use water more efficiently. Although all groups should show growth in area and demand, these sectors should continue to grow at more significant rates.

Thus, with the increase in the participation of more efficient systems, growth of the irrigated area is estimated at 76% by 2040, while water demand is expected to grow 66%.

Among the typologies, a tendency is foreseen for flooded rice to recover from areas lost in recent years, which will lead to an increase in demand (+21%), but with a reduction in its participation from 38% to 27% in 2040.

Sugarcane and coffee are also expected to have their water demand increased (+7% and +89%, respectively). Sugarcane should largely maintain its lower unit water use characteristics (salvage and fertigation), while coffee should continue to advance in the conversion from flooded to irrigated areas in the coming decades.

Annual crops on center pivots will have the largest growth (+135%) increasing its share in water demand from 18% to 25% in 2040. The pivots demand lower annual average blades than the other classes (except sugarcane salvage), due to its temporary nature (with off-season and less than 30% of active pivots in the drier period) also because they are concentrated in the areas of supplementary irrigation where rainfall contributes an important part of the crops’ needs.

The typology of other crops and systems is concentrated in areas of lower rainfall and higher evapotranspiration, as well as encompassing many perennial crops (bananas, grapes, mangoes, oranges, etc.) - which results in proportionally higher average annual rainfall. The demand for this typology is expected to grow 79% by 2040, increasing its share in the total water demand from 29% to 31%.

The geography of water use reveals more clearly the significant increase in demand in regions with a concentration of mechanized methods (especially pivots and localized irrigation). The possibility of intensifying use is evident in the current producing hubs - mainly in Western Bahia and Northwestern Minas Gerais (source regions of the São Francisco River tributaries); Central Bahia (Mucugê-Ibiocoara region, in the source region of the Paraguaçu and Contas rivers); Eastern Goias and the Minas Gerais triangle (sources of the Grande and Paraíba Rivers, which form the Pararajá River); and Southeastern São Paulo (sources of the Paranapanema River, an important tributary of the Paraná River). Hubs still in development tend to present even more significant demands until 2040, especially in the consolidated agricultural borders of Mato Grosso and Goiás and in the Northwest of Rio Grande do Sul (basins of the Uruguay and Jacuí rivers).

Seasonality of Use

The average annual flows characterize the use of irrigated agriculture for various applications and facilitate comparison with other water uses. On the other hand, there is strong seasonality in the activity, varying with the local climatic characteristics and with the calendars and types of cultivation. Several management practices also influence the seasonality of use, such as the soy waiting period - a period in which the producer cannot have live plants in order to prevent Asian rust.

In the case of flooded rice, the use is only concentrated in the annual harvest period (in hubs with the most production), which occurs between September/October (planting) and February/March (harvesting) in the main hubs. Average monthly water use shows that in just two months (November and March) flows similar to the annual average occur; with use much higher than the average between December and February, and lower between April and August.

Coffee demands more irrigation, on a national scale, between May and October, when monthly average flows are higher than the annual average. Between November and March, with more rainfall in the main producing areas, the irrigation flow is lower than the annual average.

In the case of other crops, except rice, coffee and sugarcane, the monthly average of use is highly influenced by production in the Cerrado biome and in the Northeast regions. Seasonality has less accentuated monthly deviations in relation to the average. It can also be observed that in only two months of the year the use is similar to the annual average, which is higher between May and September (period of greater water deficit in the main producing regions) and lower between November and March (rainy period, with less water deficit). The greater demand converges with the periods of lower rainfall in these producing regions.

On the map of monthly average demands per micro-basin, the aspects related to seasonality are more clearly noted, especially with the high

<table>
<thead>
<tr>
<th>State</th>
<th>Rice</th>
<th>Sugarcane</th>
<th>Coffee</th>
<th>Other crops</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO</td>
<td>8.2</td>
<td>2.1</td>
<td></td>
<td>14.4</td>
</tr>
<tr>
<td>AC</td>
<td>0.2</td>
<td>0.0</td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>AN</td>
<td>0.5</td>
<td></td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>RR</td>
<td>4.1</td>
<td>2.8</td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>PA</td>
<td>0.7</td>
<td>7.8</td>
<td></td>
<td>2.1</td>
</tr>
<tr>
<td>AP</td>
<td>0.0</td>
<td></td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>TO</td>
<td>22.8</td>
<td>0.7</td>
<td>3.0</td>
<td>34.7</td>
</tr>
<tr>
<td>MA</td>
<td>0.4</td>
<td>5.3</td>
<td>4.2</td>
<td>8.2</td>
</tr>
<tr>
<td>PI</td>
<td>1.7</td>
<td>2.1</td>
<td>6.4</td>
<td>11.1</td>
</tr>
<tr>
<td>CE</td>
<td>0.3</td>
<td>22.0</td>
<td>32.0</td>
<td>52.7</td>
</tr>
<tr>
<td>RN</td>
<td>0.3</td>
<td>0.6</td>
<td>10.0</td>
<td>16.3</td>
</tr>
<tr>
<td>PE</td>
<td>0.2</td>
<td>1.3</td>
<td>34.8</td>
<td>56.0</td>
</tr>
<tr>
<td>AL</td>
<td>1.0</td>
<td>8.1</td>
<td>0.5</td>
<td>1.1</td>
</tr>
<tr>
<td>SE</td>
<td>2.3</td>
<td>1.3</td>
<td>3.9</td>
<td>5.8</td>
</tr>
<tr>
<td>BA</td>
<td>0.0</td>
<td>9.9</td>
<td>13.4</td>
<td>26.8</td>
</tr>
<tr>
<td>MG</td>
<td>0.3</td>
<td>11.7</td>
<td>29.5</td>
<td>72.4</td>
</tr>
<tr>
<td>ES</td>
<td>0.0</td>
<td>36.2</td>
<td>5.5</td>
<td>9.3</td>
</tr>
<tr>
<td>RJ</td>
<td>0.0</td>
<td>3.1</td>
<td>0.0</td>
<td>5.4</td>
</tr>
<tr>
<td>SP</td>
<td>1.4</td>
<td>1.4</td>
<td>40.6</td>
<td>80.4</td>
</tr>
<tr>
<td>PR</td>
<td>4.8</td>
<td>0.0</td>
<td>2.6</td>
<td>0.0</td>
</tr>
<tr>
<td>SC</td>
<td>35.1</td>
<td></td>
<td>35.9</td>
<td>47.0</td>
</tr>
<tr>
<td>RS</td>
<td>277.7</td>
<td></td>
<td>344.1</td>
<td>76.1</td>
</tr>
<tr>
<td>MS</td>
<td>3.0</td>
<td>0.2</td>
<td>4.5</td>
<td>11.6</td>
</tr>
<tr>
<td>MT</td>
<td>1.6</td>
<td>0.1</td>
<td>21.9</td>
<td>46.4</td>
</tr>
<tr>
<td>GO</td>
<td>5.1</td>
<td>5.9</td>
<td>2.8</td>
<td>5.6</td>
</tr>
<tr>
<td>DF</td>
<td>0.7</td>
<td>3.9</td>
<td>1.2</td>
<td>6.7</td>
</tr>
<tr>
<td>BRAZIL</td>
<td>356.9</td>
<td>49.1</td>
<td>96.9</td>
<td>431.0</td>
</tr>
</tbody>
</table>

Use of water (m³/s) for irrigation by typology and state (average climate)
demand in the rice regions (RS, SC, TO) between September and February; the demand throughout the year in the Central-South region - which is higher in the months of greatest water deficit (May to October); and of sugarcane concentrated mainly in months where the cut occurs, when salvage irrigation is applied, as a rule.

The water demand in the springs is not linearly proportional to the irrigated areas. The need for irrigation depends on the crop, the local climate and the type of management. States with greater participation in sugarcane salvage demand proportionally less water per hectare, while rice crops with flooded management and permanent crops in the Semiarid region tend to present greater need for irrigation per hectare.

The forecast is for a 76% increase in the total irrigated area and stability in the fertigated area. The forecast is one of expansion in all irrigated typologies. The forecast is for an increase of 66% in withdrawal, due to the expansion of more efficient methods.

76% increase in the total irrigated area and stability in the fertigated area.

The forecast is for an increase of 66% in withdrawal, due to the expansion of more efficient methods.

13.9 trillions of liters a year more compared to 2019 will be allocated to areas irrigated using fertigation.

+2.06Mha center pivots will lead the expansion of irrigated areas, increasing their participation between 27% and 38%

97.5% of the water used in irrigation is abstracted from springs and 2.5% comes from agronomic reuse
Seasonality of water use for irrigation

Water demand and Rain

The climatic water balance for estimating crop water demand is greatly affected by precipitation, since irrigation (blue water) seeks to complement the need for the crop not supplied by the rain stored in the soil (green water). Precipitation still shows strong variation in space and time, including high intra-annual and inter-annual deviations from the historical average, making its estimation challenging in the national territory.

The density of rain gage stations presents great heterogeneity, and the North and Midwest regions have the lowest coverage. The lower the density of stations and the greater the variation in physical parameters, such as relief, the greater the uncertainties related to interpolating rainfall between stations. The stations also present problems of failures, inconsistencies, different time spans and time lag between the collection and availability of the data series.

Remote sensing products from orbital stations have the potential to mitigate the lack of data with frequency, resolution and temporal coverage and accuracy appropriate to the studies.

These products may replace or be supplementary to the monitoring network data. In an assessment conducted by ANA and UFPR on the performance of 10 remote sensor products in Brazil (2000-2017), the CHIRPS v0.2 (Climate Hazards Group Infrared Precipitation with Stations) (FUNK et al., 2015) and CMORPH – CDR (Center Morphing Method – Climate Data Record) (XIE et al.; 2017) products stood out.

In order to highlight the importance of rainfall in irrigation demand estimates, the Atlas has simulated the water demand (2006-2019) using the three data sources: the monitoring network and its interpolations, CHIRPS, and CMORPH; and considering the historical average climate and observed climate scenarios. All other calculation parameters are identical in the simulations.

Local monitoring is always desirable and will provide a better estimate for the producer on his/her property, but for large surfaces the satellites have advantages over the interpolated data between distant stations, therefore, a priori there isn’t a more accurate simulation.
The strong impact of rainfall variability on the demands of irrigated agriculture can be seen - which is aggravated by the reduction of the supply in the springs. With the exception of 2009, the average rainfall in the producing regions was lower than the time series, boosting water demand, especially in 2007, 2010 and 2012. The 2014-2019 period has been especially challenging due to the persistence of below-average rainfall, with the exception of 2018, which was less severe.

The relevant impact of different precipitation sources on the estimates for the same year can be seen. The data interpolated from the monitoring network managed by ANA (from Hidro) and CHIRPS show similar average rainfall as well as in the 2006–2014 period, but the estimates are off in recent years (2015–2019). CMORPH presents the lowest average rainfall in irrigated regions, resulting in greater demand.

Can the persistence of unfavorable climatic conditions (those achievable under stress-free conditions) and plant health problems. In addition to these direct impacts, there is concern about future water needs for agriculture in view of water availability for other uses under the combined effects of climate change. Moreover, with the tendency to increase

Water demand and Climate Change

Can the persistence of unfavorable climatic conditions (those achievable under stress-free conditions) and plant health problems. In addition to these direct impacts, there is concern about future water needs for agriculture in view of water availability for other uses under the combined effects of climate change. Moreover, with the tendency to increase

unit demand and with the possibility of a decrease in water at the springs, there may be a significant reduction in the potential for expansion of areas irrigated by water restrictions.

To mitigate some of these impacts, irrigation remains an efficient and secure strategy used to adapt to adverse weather conditions, and is still one of the most important means used to ensure food production around the world. As a result, irrigation can both be impaired in some regions, as it is one of the main measures of adaptation to change, which is a challenge for the productive sector and in water resources management.

Regarding the extreme events that affect agriculture, the national plan for adaptation to climate change (MMA, 2016) pointed out an expectation of an increase in the frequency of heat waves throughout Brazil, with maximum daily temperatures above 32°C that are responsible for the fall in agricultural production, since they interfere with the phases of the phenological cycle of crops and the development of vital organs of plants. It is also expected that by 2050, the productivity of most agricultural crops will decrease sharply due to excess heat. Regarding summers, the plan pointed out the increase in the frequency of drought periods, accompanied by heat, strong insolation and low relative humidity in the middle of the rainy season or in the middle of winter. Soy cultivation may become increasingly difficult in the South region and some states in the Northeast may significantly lose their agricultural area. Finally, an increase in the frequency of heavy rains and storms is expected in the South, which could cause problems for agricultural mechanization due to the flooding of cultivated areas. Sugarcane, wheat and rice plantations can also suffer losses due to strong winds, which leads to the lodging of these crops. Spraying with pesticides against pests and diseases will be made difficult due to strong winds or intense rain.

For the Irrigation Atlas, a study was prepared on the impact of climate change on the demand for irrigated agriculture in 2040. In other words, keeping all other variables the same (area, crops, calendars, etc.), how much the demand can vary just due to changes in climate in relation to the monthly average observed in the time series. This study will continue to be detailed in the context of the 2022–2040 National Water Resources Plan, which is in preparation.

In this analysis, 40 future climate scenarios were used, resulting from the combination of two greenhouse gas emission scenarios (RCP4.5 and RCP8.5, corresponding to radiative forces of 4.5 and 8.5 W/m², respectively) and from 20 climate models published in the NASA Earth Exchange Global Daily Downscaled Projections - NEXG-DDP project. This project carried out a broad statistical downscaling of global climate models (MCCs) used in the fifth phase of the IPCC called CMIP5 (Coupled Model Intercomparison Project Phase 5), making the results available in a single grid with a resolution of 0.25° degree (about 25 km x 25 km). The results of the NEXGDDP underwent additional bias correction through data observed from weather stations and were expressed, in the 2040 horizon in Brazil, in terms of precipitation anomaly and potential evapotranspiration anomaly (ETO).

In general, the results showed the consensus among the scenarios that temperatures are increasing and consequently, the evapotranspiration demand (potential evapotranspiration) - the magnitude of this variation ranges from subtle to extreme among the scenarios. As for precipitation, the scenarios indicate both reduction and increase, with different seasonal magnitudes and annual averages.

Three of the 40 assessed scenarios were chosen as references because they represent - in addition to having had good performance in representing the present climate (thus are good candidates to represent the future climate) - two limiting situations and an intermediate one. The scenario composed of the BCC- SSM11 model and the RCP8.5 emission scenario is prone to greater increases in irrigation demand, since it resulted in lower rainfall and higher evapotranspiration in regions with irrigation. The intermediary CSM4-RCP8.5

More details about the project and how to download the data can be found at: https://www.ncc.nasa.gov/services/data-collections/land-based-products/nex-gddp
mediator signals lower rainfall than the BCCSM11-RCP8.5 scenario, however, there is a less intense change in evapotranspiration. The CNRMCM5-RCP4.5 scenario would be considered optimistic from the point of view of irrigation, as it estimates more favorable rainfall and subtle increases in evapotranspiration.

Potential evapotranspiration and precipitation in the reference scenarios point to important changes in climate geography in Brazil in 2040, with a trend of negative impacts on agriculture (irrigated and rainfed).

In terms of the magnitude of increase in average annual water demand, the scenarios range from +1% in the optimistic scenario to +20% in the critical scenario, with the increase being +13% in the intermediate scenario. In addition, seasonality is affected in different magnitudes and proportions, with a maximum increase in the average monthly demand of 254% in the critical scenario and 186% in the optimistic scenario (both peaks occur in March). In the intermediate scenario, the maximum monthly variation was verified in January (+148%).

Water demand of irrigated agriculture in 2040 (except rice) with different climate change scenarios

Source: adapted from the reports of the Brazilian Water Resources Report (ANA)
Granting, Registering and Allocating Water

For water abstraction from surface or underground springs, regularization (granting and/or registration) is mandatory with the State and Federal District water resource management agencies or, in water bodies under Federal domain, with the ANA. The uses of low expression considered insignificant (small abstractions) can be dispensed with, but registration with the respective managing agency remains mandatory.

Among the most relevant aspects of improvement of the grants and registrations for irrigators, we highlight the following: automation and digitization of the process, seasonality of the authorization, collective and preventive grants, allocation and regulatory milestones. It should also be noted that most irrigators abstract water from springs managed by the States and the Federal District (76% of interventions). For grants in larger rivers, ANA manages by the States and the Federal District (76% of interventions). For grants in larger rivers, ANA concentrates 42% of the volume of regular abstractions, referring to 24% of users. About 40% of the number of interventions regularized by ANA are in the Semiarid region, due to the fact that the main water bodies are under Federal domain (Federal rivers and reservoirs in state rivers).

The granting and the registry have been conceptualized, decentralized and participatory manner, Progestão also aims to promote the multiple and sustainable use of water resources. The granting and registry have recurrent targets for their central role as instruments of water resource policies (for more information, visit: http://www.progestao.ana.gov.br).

The National Water User Registry (CNARH) was created to contain the records of water resource users (surface and underground) that abstract water, discharge effluents or perform other direct interventions in water bodies (river or watercourse, reservoir, dam, well, spring, etc.). ANA is responsible for managing the CNARH and storing the information on users from the federal (Federal government) and state domains, as well as making computational tools available to the managing agencies for data management. The respective management agencies are responsible for inserting the information into the CNARH, according to ANA Resolution no. 1,935/2007. ANA supplies the CNARH with the interventions in water bodies of Federal domain and the states can adopt the CNARH as their official user registration system.

The continuous and recurrent supply of CNARH (http://www.cnarh.ana.gov.br), preceded by an analysis of consistency of tabular and spatial data, is essential for the safety of the grantor and the irrigators. With the registration of users, it is possible to understand the real demand already compromised by the installed users, avoiding conflicts and eventually stimulating the proposal of adjustments in granting the set of users of a basin to allow the entry of new users with water security. In other words, the regularization of users is insufficient without the consolidation of records in a common user base that allows a basin-wide view, the analysis of water balances, and the incorporation of the technicians in the decision making process who analyze the requests.

ANA issues grants using the Federal System of Regulated Use (REGLA) – the registry (CNARH) and the request for regularization happen concomitantly. This System, released in 2017, made the process of requesting, monitoring and analyzing requests faster, which started to be carried out 100% online and, in most cases, without the need to send paper documents. Based on the information presented by the user, REGLA estimates the amount of water that the undertaking will need – if these values are accepted and depending on the level of commitment of the water body and the size/type of the enterprise, REGLA does the electronic processing of the allocation request and the result is published within a few weeks. Not meeting the criteria or not agreeing on the estimated amount of water, or disagreeing with the geographic information presented by the system, the user will be asked to provide more detailed information and the request for a grant will be submitted to detailed (or specific) analysis by the Agency’s technicians.

For irrigation, the automatic flow of REGLA is adopted when the irrigated area is less than 100 ha, the collective commitment of the spring (water balance) is less than 70% of the reference flow and the system is mechanized (i.e., it does not include

Overview of irrigation users in 2020 National Water User Registry – CNARH

<table>
<thead>
<tr>
<th>Water Type</th>
<th>Monthly Intake</th>
<th>Percent of Volume</th>
<th>Percent of Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater</td>
<td>~31 trillion of liters/year</td>
<td>7%</td>
<td>24%</td>
</tr>
<tr>
<td>Surface water</td>
<td>~53 thousand interventions</td>
<td>93%</td>
<td>76%</td>
</tr>
</tbody>
</table>

Insignificant use (registration) | Granting and registration

1% of volume | 99% |
16% of interventions | 84% |

For more information, visit: www.cnarh.gov.br > Regulation and Supervision

Granting the right to use water resources

Granting the right to use water resources is one of the instruments of the National Water Resources Policy (Law no. 9,433/1997). The grant corresponds to an authorization for using water, either for the uptake or disposal of effluents, with the objective of ensuring quantitative and qualitative control and the effective exercise of water access rights. Through the grant, we seek to ensure the rational use of water resources and the compatibility of multiple uses. In some situations, such as in small volume uptakes in basins with good availability, the irrigator may be exempted from the grant, but must be registered with the competent authority.

The grant is granted by the water resources management entity according to the dominance of the waters. In the waters under Federal domain, as in rivers that cross through more than one State e.g.: São Francisco river), ANA is responsible for the issuing it. In rivers under State and Federal District domain, as in rivers that are born and flow in the same State, the authority is of the respective state and district management entities. Groundwater is state-owned. The Figure represents a hypothetical river basin, with three States and several rivers and abstraction points, helping to understand the domain of the waters and the respective granting authority.

![Diagram of a hypothetical river basin](http://www.cnarh.gov.br)
the surface methods. If the user agrees with the demand calculations, it is exempted from manual technical analysis, i.e., the grant is analyzed and issued automatically.

REGLA has incorporated improvements in the digitalization (online process), automation (for interventions of less impact on the collective commitment of the springs) and seasonality (values are monthly).

The negotiated allocation of water is another important instrument of planning and regulation, and it improves the processes of granting and registration, mainly in water systems (reservoirs and stretches of rivers) in situations of water scarcity and conflicts of use. These are the agreements entered into between the granting authority and the users, with participation from the river basin committee, when applicable, aiming at the distribution of the water resources of the respective river basin. It is often used to regulate the uses of water systems that are subject to intense droughts, with emergency or strong potential for conflict. The allocation term is a prerequisite for establishing regulatory framework, which formalizes the process through a joint resolution of ANA and the States(s), increasing the legal certainty of the rules defined for each specific water system.

By setting more specific criteria and limits for the grant, establishing hydrological states (normal, requires attention and critical), defining the allocation rules for each hydrological state and requiring contingency plans for public supply and other uses, the allocation is also a powerful instrument of conflict prevention and management organization by users at the scale of the basin or water system. It is a model to be strengthened not only in the current molds, but as inspiration for the self-management of irrigator associations. It must also be adapted to private irrigation hubs in humid regions where low water conservation predominates, where the allocation still becomes unsatisfactory since the water supply is not concentrated in a large reservoir or perennial stretch of common use, which makes the available water difficult to monitor and the negotiation between users. The negotiated allocation can be configured as an opportunity to further develop the seasonal allocation, with more rainy season permits and fewer dry season permits.

In this same approach (allocation and self-management of the irrigators), the collective and preventive grant can be rethought, seeking regulatory paths that enable it. Indirectly, this model already occurs in large grants of public projects, when the grant in the common infrastructure is given to a manager (Codevasf, DNOCs etc.) who manages the distribution, collection and guarantee of the terms of the grant with the irrigators that occupy family or business lots. The Duro Stream Irrigation Perimeter Users Association (AUD), which has been managing the Duro stream/RS perimeter since 1990, has the granting power and manages the water abstraction of more than 400 rice producers, most with small properties (http://aud.org.br/).

Another example is that of preventive grants issued by ANA for the extinct Ministry of Fisheries. Based on the support capacity of the reserves, the preventive grant allows the requesting entity to seek investments and partnerships with the private sector to effectively develop the activity.

In the energy sector, the preventive grants allow the conservation of the hydraulic potential of a water body, subtracting the current consumptive uses and those projected for the future - they are issued under the name of the National Electric Energy Agency - ANEEL and converted into a grant to the undertaking after the concession/authorization process.

The mechanisms of preventive allocation, collective allocation, and negotiated allocation can evolve in the irrigated production hubs and contribute to the sector’s water security and multiple uses.

Efficiency of Water Use and Quality

Irrigated agriculture depends on adequate availability and good water quality. In the same way that it can affect these parameters, irrigation can also be affected by the inefficiency and pollution resulting from other water uses.

Although the practice may cause negative economic, social, and environmental impacts, it can be observed that irrigation tends to be installed in areas previously occupied by pasture or rainfed agriculture. The technological package that accompanies irrigation, i.e., improvements in inputs, services, machinery and implements, result in relative improvements in the environmental quality of these regions, such as the adoption of more appropriate management techniques, no-tillage and better soil use (with less exposure to erosive processes).

On the other hand, there are increasing concerns about water resources. Problems of quantity and quality of water tend to occur in an interconnected manner: the same excess of water applied in an irrigated area, not being used by crops, is what can return to surface and underground water bodies with soluble salts and pesticides. In another perspective, the loss of other user sectors can limit the availability of water for irrigation, as well as the water that reaches the polluted rural environment can limit or make the activity unfeasible.

Thus, the efficiency of water use and water pollution are intertwining themes. Requirements and legal incentives to control efficiency and pollution occur in the processes of environmental licensing and granting the use of water resources of the undertakings, in addition to usage charges. For example: projects that incorporate more efficient irrigation equipment and methods have priority in licensing (CONAMA Resolution no. 284/2000); and water resource management agencies require minimum water use efficiency to receive the grant (ANA, 2013). The grant also seeks to ensure that the amount of water required by the irrigator is compatible with the existing water availability and with other current and future uses, at both the local scale and the scale of the river basin. It is known, on the other hand, that there is great room for improvement and further advancement in the implementation of these instruments, as well as in the promotion and awareness of producers.

In the area of water resources, the term water use efficiency is used as a synonym for irrigation efficiency (ANA, 2013), expressing the relationship between the volume of water required for plants and the volume of water abstracted from the water body. The difference can be considered as loss, i.e., the portion of water removed from the water body that is not used by the plants. Losses can occur due to leaks in distribution and storage, evaporation, dragging or drifting by wind, surface runoff and deep percolation. The losses do not necessarily express water waste, as no equipment ensures 100% efficiency and it is not possible to accurately control all variables under field conditions (such as wind). Part of the losses can return directly to the water bodies.

Irrigation efficiency is correlated with the method and the irrigation system adopted, but in field conditions is also greatly influenced by local practices of equipment operation and maintenance and water and soil management. Efficiency is also commonly affected by errors in the planning and implementation stages of irrigation on the property. Poorly sized motor pumps, equipment with low quality, poor anchoring of pumps and pipes, dirt entering the pipes during assembly, lack of maintenance and installation different than the project design are some of the most common failures in these stages (Testezlaf, 2017).

There is no a priori ideal irrigation method or system and there should be an integrated assessment of socioeconomic and environmental components – of which efficiency is one of the variables. For the most common irrigation systems - and in good conditions of installation, management and operation - the reference values of water use efficiency range from 60% (Flood) to 95% (滴灌).
There is a great lack of knowledge about the efficiencies actually practiced in Brazil. A more comprehensive study conducted in the São Francisco river basin assessed the efficiency of water application in 55 projects, 33 with localized method (drip and micro–sprinklers) and 22 in spraying (conventional, gun and center pivot). The average efficiencies were 79.1% and 70.3%, respectively (ANA, 2003). The study highlighted the low adequacy of the applied blades in relation to those required by the plants, there are higher or, in most cases, lower blades than those required.

The portion of irrigation losses (or inefficiency) that do not go through evapotranspiration and remain in the soil can carry salts, sediments, organic matter and pollutants to surface and groundwater bodies, contributing to their contamination. Although agriculture can cause point pollution (direct impacts on other waters and biodiversity), although in Brazil it is a growing concern, most of the irrigated areas are in regions with good leaching and soil drainage and use good quality water, which attenuates the salinization process. In the Northeast, where soils do not have these characteristics, the process already occurs in a more advanced manner. The crops have different tolerance levels to the salt concentrations.

Regarding the transport of pesticides, the situation is worrisome when one observes that the expansion and modernization of Brazilian agriculture have been accompanied by an intensification in the use of fertilizers. Between 2009 and 2014, the commercialization of fertilizers in Brazil grew 20.3%, while the total planted area grew 11.8%. The poor quality of the water that arrives for irrigated agriculture can cause limitations to its productivity, quality and longevity of sugarcane fields.

Elevated environmental resources. The salts come from the water itself used in irrigation or by means of elevation of the water table. Various irrigated areas around the world are affected by this process, resulting in significant reductions in productivity, abandonment of the agricultural areas and salinization of watercourses themselves with impacts on other water uses and biodiversity. Although in Brazil it is a growing concern, most of the irrigated areas are in regions with good leaching and soil drainage and use good quality water, which attenuates the salinization process. In the Northeast, where soils do not have these characteristics, the process already occurs in a more advanced manner. The crops have different tolerance levels to the salt concentrations.

Soil salinization (increased salt concentration) and decreased infiltration capacity are by-products of inadequate management of equipment and environmental resources. The salts come from the water itself used in irrigation or by means of

<table>
<thead>
<tr>
<th>Method</th>
<th>Irrigation system</th>
<th>Reference Efficiency (%)</th>
<th>Losses (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>Open furrows</td>
<td>65</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Closed or interconnected furrows in basins</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Flooding</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>Underground</td>
<td>Underground or buried drill</td>
<td>95</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Sub-irrigation or elevation of the water table</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>Sprinkling</td>
<td>Conventional with side or mesh lines</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Perforated hoses</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Self-propelled gun/Reel</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Center pivot (fixed or towable)</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Linear</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>Localized</td>
<td>Drip</td>
<td>95</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Micro-sprinkler</td>
<td>90</td>
<td>10</td>
</tr>
</tbody>
</table>

Source: adapted from ANA (2013)

Reuse of Industry Effluents and Sanitation

Irrigated agriculture can be an important ally for reducing or mitigating water pollution in industry and cities.

The sugar and ethanol sector performs the largest agro-industrial reuse in Brazil with the fertigation of sugarcane from the effluents generated during sugarcane processing. The discharge of these effluents into rivers was one of the main environmental problems in the country, having been equated by adjustments in environmental standards and the commitment to sustainability of the sector. Currently, all mills in the country have irrigation equipment (mainly reels) annually allocating about 600 million liters of effluent to the sugarcane fields. As a result, this volume is no longer released into water bodies and is reused as an input in the sugarcane plantation itself.

In order for fertigation to express all its potential and not only be carried out as effluent disposal in the soil, but it must also follow technical criteria for sugarcane nutrition and specific environmental standards. Specific programs, regulations and studies should be strengthened by the institutions responsible for improving and expanding the potential of fertigation in minimizing environmental problems and increasing the productivity, quality and longevity of sugarcane fields.

Sugarcane and other industrial crops are the main focus for reuse of effluents from other sectors, especially other agribusinesses and cities. The new role of ANA in the regulation of sanitation, brought about by Federal Law no. 14,026/2020, should also bring synergies with it, especially in the discussion of the use of treated sanitation in agriculture. It is expected that this practice will decrease water quality problems in the receiving bodies, especially in headwater regions, attenuate the demand on springs and strengthen agribusiness.

2017 study of the current MDR (2017) – Preparation of the Proposal of the Action Plan to establish a Policy for Reusing Treated Sanitation in Brazil – estimated a potential for reuse in the short-medium term in Brazil of approximately 410 billion liters per year (equivalent to 13 m³/s - at the time of the estimate, the current reuse was estimated at 1.6 m³/s), with more than half of this potential concentrated in the Southeast region. The potential considers that secondary treatment would be the minimum desirable level of treatment for reuse.

Additionally, the study presented international experiences and best practices found in global reuse projects and the difficulties faced in Brazil in implementing reuse projects.

The actions identified in these projects related to good reuse practices for the different modalities, and lessons learned regarding the level of treatment required per water reuse modality and sanitation treatment technologies used, as well as the formation of partnerships could foster the construction of a positive agenda to develop a realistic and sustainable reuse policy.
In a country of continental size and great geodiversity, water resource management is a major challenge. In this sense, it is important to advance in the implementation of policies and their instruments in a broad manner, but also define special areas where management can be carried out differently in favor of water security, according to the specific conditions of these areas and the scale of operations of the institutions. For management to be distinct, the technical basis of information and monitoring of these areas must also be distinct.

Most of the river basins with quantitative criticality indicators have irrigated agriculture as their main consumptive use. Conflicts or competitive uses can occur between sectors (between irrigators) or with other sectors such as urban supply and energy generation. Criticality occurs due to the high demands of irrigation, but also in regions with moderate demands, but with low water availability, such as the Semiarid region. With the prospect of water use in irrigation increasing by up to 66% by 2040, increased planning and management efforts are required.

The most dynamic water-using sector in Brazil and worldwide and an important vector for regional development is irrigated agriculture. If on one hand the growth of irrigation means more water use, on the other hand investments in this sector also result in a substantial increase in productivity and production value, reducing the pressure to incorporate new areas for cultivation and contributing to the food security of the population and the productive security of the agro-industrial sector. The important thing, therefore, is that the expansion occurs with water security for the sector itself and for other water uses.

The data consolidated in the 2017 Irrigation Atlas allowed a first identification of special areas of water resources management for irrigated agriculture on a national scale. Subsequently, and in line with the sectoral irrigation policy, these areas were called national irrigated agriculture hubs. The identification and classification of the hubs was improved in the study National Irrigated Agriculture Hubs: mapping irrigated areas using satellite images (ANA, 2020) – the publication detailed information in six national hubs using innovative methodologies to analyze remote sensing images, supported by field visits. The methodologies were subsequently applied to other areas as part of the preparations for the 2020 Atlas.

In this edition of the Atlas – and based on the total irrigated area, the occupation concentration/density, growth potential and growth achieved in the short and medium term – 28 National Hubs are identified, i.e., special areas of water resource management for irrigated agriculture on a national scale. 50% of the irrigated area and 60% of the current water demand is concentrated in these hubs. The classification of national hubs is dynamic and can be adjusted according to specific analysis objectives or with...
the specific public policies to be developed. Regional, state and local hubs can also be identified based on information in the Atlas and can be detailed in specific works in these territorial groups. The delimitation of the hubs considers the hydrographic division, taking into account that water resource management adopts the river basin as a territorial unit.

Among the 28 National Irrigated Agriculture Hubs identified in this edition, 09 have rice by flooding as their predominant typology, and in 15 center pivots predominate. The typologies do not indicate exclusivity of the method or irrigated crop(s), but the predominant pattern.

Flooded rice is the most present typology in traditional producing areas of Rio Grande do Sul and Santa Catarina, in addition to Southwest Tocantins in the basins of the Javaés and Formoso rivers, totaling nine hubs — many of them bordering, but in different river basins. In these consolidated hubs there is less prospect of expansion of irrigation and part of its estimated potential may be related, in fact, to the rotation of land use where neighboring areas rotate rice cultivation.

The 15 national center pivot hubs are dedicated to the production of grains (soy, corn, beans, cotton, etc.), most of them in the Cerrado biome, but also in transition regions between the Cerrado and the Amazon (Alto Teles Pires) and between the Atlantic Forest and Pampa (Uruguay and Alto Jacuí), in addition to Mucugê-Ibicoara in the Caatinga region. The hubs are distributed between seven states (BA, DF, GO, MT, MG, SP and RS). In the Paracatu/Entre Ríbeiros (MG) hub, sugarcane irrigation under pivots and other spraying methods is also relevant; and in the Mucugê-Ibicoara hub, the crop profile is different from the others, with potatoes and coffee predominating.

The recent growth and the high potential for expansion also allow us to delimit a Great National Hub of pivot irrigation, formed by six national hubs in the central region of Brazil and other nearby expansion areas in the river basin regions of the Paraná and São Francisco rivers. In this area, expansion is accelerated and new hubs are in formation.

In the other four national hubs, three are located in the Semiarid region: predominantly fruit-growing and sugarcane in Petrolina/Juazeiro (PE/BA) and in Jaíba (MG); and fruit-growing in the Jaguaribe and in the North of Espírito Santo neighboring coastal basins (CE/RN). In Northern Espírito Santo, flooded rice is the most present typology in traditional producing areas of Rio Grande do Sul and Santa Catarina, in addition to Southwest Tocantins in the basins of the Javaés and Formoso rivers, totaling nine hubs — many of them bordering, but in different river basins. In these consolidated hubs there is less prospect of expansion of irrigation and part of its estimated potential may be related, in fact, to the rotation of land use where neighboring areas rotate rice cultivation.

The 15 national center pivot hubs are dedicated to the production of grains (soy, corn, beans, cotton, etc.), most of them in the Cerrado biome, but also in transition regions between the Cerrado and the Amazon (Alto Teles Pires) and between the Atlantic Forest and Pampa (Uruguay and Alto Jacuí), in addition to Mucugê-Ibicoara in the Caatinga region. The hubs are distributed between seven states (BA, DF, GO, MT, MG, SP and RS). In the Paracatu/Entre Ríbeiros (MG) hub, sugarcane irrigation under pivots and other spraying methods is also relevant; and in the Mucugê-Ibicoara hub, the crop profile is different from the others, with potatoes and coffee predominating.

The recent growth and the high potential for expansion also allow us to delimit a Great National Hub of pivot irrigation, formed by six national hubs in the central region of Brazil and other nearby expansion areas in the river basin regions of the Paraná and São Francisco rivers. In this area, expansion is accelerated and new hubs are in formation.

In the other four national hubs, three are located in the Semiarid region: predominantly fruit-growing and sugarcane in Petrolina/Juazeiro (PE/BA) and in Jaíba (MG); and fruit-growing in the Jaguaribe and in the North of Espírito Santo neighboring coastal basins (CE/RN). In Northern Espírito Santo, flooded rice is the most present typology in traditional producing areas of Rio Grande do Sul and Santa Catarina, in addition to Southwest Tocantins in the basins of the Javaés and Formoso rivers, totaling nine hubs — many of them bordering, but in different river basins. In these consolidated hubs there is less prospect of expansion of irrigation and part of its estimated potential may be related, in fact, to the rotation of land use where neighboring areas rotate rice cultivation.
Santo, coffee predominates and there is also expansion of center pivots. Irrigation methods are also diversified in these hubs, with localized irrigation (micro-sprinkler and drip) being more expressive.

Below, the main characteristics of the national hubs are detailed with the indicators developed in the Atlas. Additional information can be found at http://atlasirrigacao.ana.gov.br.

The calendar for planting/harvesting rice is similar at the hubs and the harvest lasts between August and May. Rice has an average cycle of 110 to 125 days, which in conventional management requires between 80 and 100 days of irrigation until the trays can be emptied and harvest preparation can begin. In pre-germinated management, irrigation starts about 25 days before sowing, totaling about 100 to 125 days of irrigation.

Of the nine hubs, six are located in Rio Grande do Sul - four near the border. Two hubs are located in Santa Catarina and South Santa Catarina has a small area within Rio Grande do Sul. In Tocantins, the Javaés-Formoso hub stands out.

In water management, one can observe the dominance of pre-germinated management in Santa Catarina and conventional management in Tocantins. In Rio Grande do Sul, according to IRGA, 9% of the irrigated area was allocated to pre-germination and 91% to conventional in the 2019/2020 harvest.

Important part of the estimated potential at the rice hubs (total and effective) may already be in use to rotate with the rice itself, may not present implementation feasibility, in addition to other economic and environmental limitations that affect the potential. The hub with the greatest expansion potential is Médio Jacuí (RS) whose potential can also be reduced by upstream water consumption - the Alto Jacuí region is a pivot hub and is one of those with the highest recent growth and expansion potential.
2.2 trillion liters/year
243 thousand ha
146 thousand ha
98 thousand ha

Key
- Current water demand
- Current irrigated area
- Total physical and water potential
- Effective potential

98% conventional management and 2% pre-germinated management
Main irrigating municipalities: Mostardas, Camaquã, Viamão, Tapera, Arambaré, Palmares do Sul, Santo Antônio do Patrocínio, Eldorado do Sul, Capivari do Sul, Barra do Ribeiro, Pelotas

77% conventional management and 23% pre-germinated management
Main irrigating municipalities: Santa Vitória do Palmar, Arroio Grande, Rio Grande, Jaguarão, Capão do Leão, Pelotas

99% conventional management
Main irrigating municipalities: Dom Pedro II, Santa Ana do Livramento, Lavras do Sul, São Gabriel, Rosário do Sul and Cacequi

98% conventional management and 2% pre-germinated management
Main irrigating municipalities: Uruguaiana, Itaquí, Alegrete, São Borja, Maçambará, Barra do Quaraí, Quaraí, São Vicente do Sul, Rosário do Sul and Cacequi

98% conventional management
Main irrigating municipalities: Massaranduba, Guaramirim, Joinville, Ilhota, Gaspar, Araquari, Itajaí

97% conventional management and 3% pre-germinated management
Main irrigating municipalities: Uruguaiana, Itaquí, Alegrete, São Borja, Maçambará, Barra do Quaraí, Quaraí, São Vicente do Sul, Rosário do Sul and Cacequi

88% conventional management and 12% pre-germinated management
Main irrigating municipalities: Uruguaiana, Itaquí, Alegrete, São Borja, Maçambará, Barra do Quaraí, Quaraí, São Vicente do Sul, Rosário do Sul and Cacequi

99% conventional management
Main irrigating municipalities: Dom Pedro II, Santa Ana do Livramento, Lavras do Sul, São Gabriel, Rosário do Sul and Cacequi

99% conventional management
Main irrigating municipalities: Dom Pedro II, Santa Ana do Livramento, Lavras do Sul, São Gabriel, Rosário do Sul and Cacequi

99% conventional management
Main irrigating municipalities: Uruguaiana, Itaquí, Alegrete, São Borja, Maçambará, Barra do Quaraí, Quaraí, São Vicente do Sul, Rosário do Sul and Cacequi

98% conventional management
Main irrigating municipalities: Santa Vitória do Palmar, Arroio Grande, Rio Grande, Jaguarão, Capão do Leão, Pelotas

88% conventional management and 12% pre-germinated management
Main irrigating municipalities: Uruguaiana, Itaquí, Alegrete, São Borja, Maçambará, Barra do Quaraí, Quaraí, São Vicente do Sul, Rosário do Sul and Cacequi

98% conventional management
Main irrigating municipalities: Santa Vitória do Palmar, Arroio Grande, Rio Grande, Jaguarão, Capão do Leão, Pelotas

99% conventional management
Main irrigating municipalities: Dom Pedro II, Santa Ana do Livramento, Lavras do Sul, São Gabriel, Rosário do Sul and Cacequi

2.9 trillion liters/year
331 thousand ha
146 thousand ha
107 thousand ha

1.3 trillion liters/year
132 thousand ha
97 thousand ha
65 thousand ha

SANTA MARIA/ IBICUI DA ARMADA
799 billion liters/year
38 thousand ha
31 thousand ha
31 thousand ha

182 billion liters/year
31 thousand ha
75 thousand ha
28 thousand ha

1.3 trillion liters/year
155 thousand ha
92 thousand ha
297 thousand ha

725 billion liters/year
131 thousand ha
152 thousand ha
87 thousand ha

MÉDIO JACUI
81% conventional management and 19% pre-germinated management
Main irrigating municipalities: Cachoeira do Sul, Restinga Sêca, São Sepé, Formigueiro, Agudo, Rio Pardo, Santa Maria, Candelária, Santa Margarida do Sul and São Gabriel

5% of the territory is irrigated

5% of the territory is irrigated

1.53 billion liters/year
16 thousand ha
6.5 thousand ha
3 thousand ha

NEGRO
664 billion liters/year
113 thousand ha
31 thousand ha
5 thousand ha

JAVAÉS / FORMOSO
664 billion liters/year
113 thousand ha
31 thousand ha
5 thousand ha

153 billion liters/year
16 thousand ha
6.5 thousand ha
3 thousand ha

10% of the territory is irrigated

100% of the territory is irrigated

1.3 trillion liters/year
155 thousand ha
92 thousand ha
297 thousand ha

725 billion liters/year
131 thousand ha
152 thousand ha
87 thousand ha

MÉDIO JACUI
81% conventional management and 19% pre-germinated management
Main irrigating municipalities: Cachoeira do Sul, Restinga Sêca, São Sepé, Formigueiro, Agudo, Rio Pardo, Santa Maria, Candelária, Santa Margarida do Sul and São Gabriel

5% of the territory is irrigated

5% of the territory is irrigated

1.53 billion liters/year
16 thousand ha
6.5 thousand ha
3 thousand ha

NEGRO
664 billion liters/year
113 thousand ha
31 thousand ha
5 thousand ha

JAVAÉS / FORMOSO
664 billion liters/year
113 thousand ha
31 thousand ha
5 thousand ha

100% of the territory is irrigated

100% of the territory is irrigated

10% of the territory is irrigated

14% of the territory is irrigated

100% pre-germinated management
Main irrigating municipalities: Turvo, Meleira, Farquihinha, Nova Veneza, Jacinto Machado, Arraúguia, Tubarão

100% pre-germinated management
Main irrigating municipalities: Santa Vitória do Palmar, Arroio Grande, Rio Grande, Jaguarão, Capão do Leão, Pelotas

100% conventional management
Main irrigating municipalities: Bagé, Aceguá, Hulha Negra

5% of the territory is irrigated

8% of the territory is irrigated

5% of the territory is irrigated

8% of the territory is irrigated

5% of the territory is irrigated

8% of the territory is irrigated
Pivot hubs have been the main drivers of irrigation expansion in Brazil and this trend is expected to continue. It can be observed, on the other hand, that there are already consolidated hubs with lower expansion prospects, due to: the relative exhaustion of their physical and water potential; economic-financial limitations; or due to competitive uses of water with other uses or operating rules.

The calendar for planting/harvesting and irrigation is very dynamic in the center pivot hubs: as it is mostly temporary crops (soy, corn, beans, cotton, etc.), it is common to have 4 to 5 harvests over two harvest years. The dynamics of the climate and the market influence this dynamic annually.

Among the most common rotation patterns, there is the soy harvest (1st summer harvest) followed by the second harvest with corn (2nd harvest); soy harvest, followed by second corn harvest and 3rd bean harvest; 1st harvest (corn or soy), followed by long term harvest (cotton ~ 180 days). Also, around 8% of the pivot area is occupied with (semi)perennial crops, especially with coffee and sugarcane.

The producers seek to minimize the crop in periods of greater water deficit, maximizing production in the rainy period and transition to the dry period. With this, seasonality and idleness in water use are even more pronounced in the dynamics of irrigation under center pivots. In 2017, for example, occupancy rates of around 90% in the months with the highest amount of rainfall, i.e., reduced need to activate the equipment. This well-known strategy aims to reduce the costs related to the application of irrigation water, especially electricity, which is costly in these production systems.

In the second harvest, which in the pivot areas occurs mostly from February/March to May/June, the average occupation rate of the equipped area oscillates between 72% and 80%. The second season tends to be the period of greatest water demand when associating high occupancy rates with intermediary irrigation needs per hectare (not as high as in the dry season, but much higher than in the rainy season). Thus, the data reinforce that the activation of center pivots has been used mainly to increase production and productivity in the second harvest. Although the rains have already decreased at the end of the second harvest, the soil still has water reserves and harvesting takes place during the rainy season, which contributes to mechanized operations and low incidence of pests and diseases in crops.

In the third harvest, which advances in the driest period of these irrigated regions (July to September), precipitation practically ceases and the water stored in the soil is drastically reduced. In this period, the occupation rate of pivots drops to levels around 30% to 40%. In addition to reducing water availability, high temperatures, increased costs and waiting periods for soy and beans contribute to lower occupancy rates. Still, water use is significant, as the water blade required per hectare reaches high levels.

The 15 irrigation hubs with a predominance of center pivots are distributed in all regions (except the North) and in seven states (BA, DF, GO, MT, MG, SP and RS). Four hubs - São Marcos, Alto Preto, Guaira-Miguelpólis and Pardo-Mogi Guacu - extrapolate a state and also contain water bodies under Federal domain, requiring even more integrated planning and management efforts.

The pivot hubs, including the Large National Hub, represent the main frontier of current and future expansion of irrigation in the country. However, the estimated physical and water potential (total and effective) can be limited by the economic, environmental restrictions and the allocation of water between different uses - in addition to cyclical issues. In addition, some consolidated hubs already exploit areas greater than the estimated additional effective potential, indicating the proximity of their support capacities.
Key
- Current water demand
- Current irrigated area
- Total physical and water potential
- Effective potential

National Hubs - Center Pivots

ALTO TELES PIRES
- 164 billion liters/year
- 63.6 thousand ha
- 773 thousand ha
- 703 thousand ha
- Main irrigating municipalities: Sorriso, Lucas do Rio Verde, Vera, Ipiranga do Norte

ALTO RIO DAS MORTES
- 118 billion liters/year
- 458 thousand ha
- 384 thousand ha
- Main irrigating municipalities: Primavera do Leste, Campo Verde, Poxoréu, Dom Aquino, Novo São Joaquim, General Carneiro, Santo Antônio do Leste

ALTO ARAGUAIA
- 118 billion liters/year
- 138 thousand ha
- 2 thousand ha
- Main irrigating municipalities: Jussara, Santa Fé de Goiás, Britânia

SÃO MARCOS
- 361 billion liters/year
- 98 thousand ha
- 109 thousand ha
- 51 thousand ha
- Main irrigating municipalities: Unaí, Cristalina, Paracatu

PARACATU / ENTRE-RIBEIROS
- 461 billion liters/year
- 35 thousand ha
- 143 thousand ha
- 32 thousand ha
- Main irrigating municipalities: Paracatu

ALTO ARAGUARI-PARANÁBA
- 299 billion liters/year
- 90 thousand ha
- 20 + thousand ha
- 309 thousand ha
- 140 thousand ha
- 9% of the territory is irrigated

GUAIARA-MIGUELÓPOLIS
- 141 billion liters/year
- 61 thousand ha
- 265 + thousand ha fertigated
- 318 thousand ha
- 81 thousand ha
- Main irrigating municipalities: Uberaba, Perdizes, Patrocínio, Santa Juliana, Rio Paraíba, Indianópolis

SLOPES OF THE PARDO AND MOGI GUACU RIVERS
- 1.55 billion liters/year
- 302 thousand ha
- 79 + thousand ha fertigated
- 252 thousand ha
- 66 thousand ha
- 12% of the territory is irrigated

ALTO PARANAPANEMA
- 219 billion liters/year
- 117 thousand ha
- 627 thousand ha
- 231 thousand ha
- 6% of the territory is irrigated

ALTO PRETO
- 96 billion liters/year
- 24 thousand ha
- 35 thousand ha
- 27 thousand ha
- Main irrigating municipalities: Brasilia, Cabeceira Grande, Cabeceiras, Formosa

GUAÍRA- SÃO VINCENTE
- 118 billion liters/year
- 24 thousand ha
- 2 thousand ha
- Main irrigating municipalities: Goianésia, São Luiz do Norte, Itaberá, Santa Isabel, Nova Glória, Santa Rita do Novo Destino, Itapaci

ALMAS RIVER
- 155 billion liters/year
- 40 thousand ha
- 40 thousand ha
- Main irrigating municipalities: Itaí, Itapeva, Paranapanema, Avaré, Itaberá, Beri, Itapei, Taquarituba, Cerqueira César

GUAÍRA
- 141 billion liters/year
- 61 thousand ha
- 265 + thousand ha fertigated
- 318 thousand ha
- 81 thousand ha
- Main irrigating municipalities: Casa Branca, Mococa, Santa Cruz das Palmeiras, Porto Ferreira, Leme, Vargem Grande do Sul, Mogi Guacu, São João da Boa Vista, Aguai

ALTO ARAGUARI
- 299 billion liters/year
- 90 thousand ha
- 20 + thousand ha
- 309 thousand ha
- 140 thousand ha
- 9% of the territory is irrigated

PARACATU
- 461 billion liters/year
- 35 thousand ha
- 143 thousand ha
- 32 thousand ha
- Main irrigating municipalities: Paracatu

PARACATU / ENTRE RIBERICO
- 299 billion liters/year
- 90 thousand ha
- 20 + thousand ha
- 309 thousand ha
- 140 thousand ha
- 9% of the territory is irrigated

PARACATU
- 461 billion liters/year
- 35 thousand ha
- 143 thousand ha
- 32 thousand ha
- Main irrigating municipalities: Paracatu

SÃO MARCOS
- 361 billion liters/year
- 98 thousand ha
- 109 thousand ha
- 51 thousand ha
- Main irrigating municipalities: Unaí, Cristalina, Paracatu
IRRIGATION

Main irrigating municipalities: São Desidério, Barreiras, Jaborandi, Luís Eduardo Magalhães, Riachão das Neves, Correntina

1.1 trillion liters/year
161 thousand ha
514 thousand ha
67 thousand ha

3% of the territory is irrigated

MUCUGÉ-IBICOARA

Main irrigating municipalities: Mucugê and Ibicoara

103 billion liters/year
17 thousand ha
7 thousand ha
< thousand ha

9% of the territory is irrigated

URUGUA

Main irrigating municipalities: Cruz Alta, Tupanciretã, Santa Bárbara do Sul, São Luiz Gonzaga, São Miguel das Missões, Santo Antônio das Missões, Palmeira das Missões, Jóia, Boa Vista do Codoado

215 billion liters/year
72.5 thousand ha
572 thousand ha
474 thousand ha

2% of the territory is irrigated

ALTO JACÚI

Main irrigating municipalities: Cruz Alta, Tupanciretã, Santa Bárbara do Sul, Boa Vista do Incra, Salto do Jacuí, Fortaleza dos Valos, Ibirubá, Júlio de Castilhos

83 billion liters/year
30 thousand ha
335 thousand ha
278 thousand ha

33% of the territory is irrigated

Center pivots in satellite imagery

Image C - Center pivots with different crops in different vegetative development phases. Casa Branca/SP – SLOPES OF THE RIO PARDO AND MOGI GUACU RIVER IRRIGATION HUB. Normalized Difference Vegetation Index (NDVI) obtained with Sentinel 2 image from 01/15/2020.

Figure D - Center pivots with different crops in different vegetative development phases. Border between the municipalities of the Paraíba River and Campos Altos/MG – IRRIGATION HUB

Among the 1.55 million hectares planted under center pivots in Brazil, 73% (1.14 M ha) are located in the Cerrado biome, including twelve of the fifteen National Hubs of center pivots. Such hubs concentrate 64% (735 thousand ha) of area equipped by this irrigation system.

Unlike the rainfed agriculture that occurs mainly in the rainy season and the farmer harvests from one to two harvests (harvest and/or second harvest), in agriculture using center pivots, it is common to have on average two per year or five every two years. In other words, because it has greater water security throughout the year, the farmer plans for two or other words, because it has greater water security throughout the year, the farmer plans for two or three grain harvests or opts for a perennial crop like coffee or semi-perennial like sugarcane, because they know that in cases of Indian summers or prolonged drought they will not lose the harvest, because the irrigation system will supply the water demand of the crop.

Using the methodology proposed by Bendini et al. (2019), which consists of extracting metrics from EVI (Enhanced Vegetation Index) curves, generated from filtered and smoothed time series of Earth observation satellites from the Landsat and Sentinel constellation, the Atlas carried out an assessment on cultivation patterns within the pivots in the Cerrado biome. The series includes 54 observations regularly spaced in time, in a regular interval of 8 days, in the period between August 2018 and October 2019 (harvest year).

EVI is a vegetation index that shows the vegetative vigor of a crop – the more leaf mass, the greater the vigor and the index (which ranges from -1 to +1). Observing the behavior of this index over time, in this case a harvest year, it is possible to estimate the intensity of use in each center pivot of the 12 Hubs. Intensity of use means the number of harvests, their duration and in which months it occurs. Five classes associated with the types of cultivation were established, namely: only one harvest, usually in summer (or single harvest), harvest followed by a second harvest (or double harvest); harvest or second harvest followed by winter harvest (or double harvest - winter); triple harvest; and perennial and semi-perennial harvests.

The results reiterate the intensity of use in the pivot areas – 62% of the occupied area performs double harvest (harvest followed by a second harvest) and 16% performs triple harvest. Only 8% performed a single harvest in the 2018/19 harvest. In other words, irrigation enables more harvests and they tend to occur in the rainy season and transition into the dry season, increasing the water security of production and avoiding drier periods, where costs also increase greatly.

When disaggregating the information in the 12 National Hubs studied, it can be seen that the double harvest has a significant area in all, representing more than 50% of the equipped area. The triple harvest prevails over perennial/semi-perennial crops and over the single harvest. In hubs like Alto Teles Pires/MT, where rainfall rates are higher when compared to the others, triple harvest is quite common and occupies a more significant area. In regions where there is a prolonged dry season, such as in Western Bahia, the single harvest has greater relevance. The semi-perennial cultivation area also stands out where the cultivation in irrigated sugarcane is greater, as are the cases of the Rio das Almas/GO, Paracatu and Entre-Ribeiros/MG and Guará-Miqueulopolis (MG/SP) hubs.

Since second harvest is the predominant management in all 12 hubs, we analyzed in which periods of the year these harvests occur. Knowledge of this seasonality of irrigated agriculture is crucial in the planning and management of water resources, since irrigation demands are different in the dry and rainy season. It is noted that the first harvest is planted between the months of August and November, but mainly in the months of September and October, the start of the rainy season. The second harvest is planted between December and April, concentrating months of greater precipitation in January and February. This is because although the irrigator has water via irrigation to supply the crop demand, there is a high cost involved in the irrigation operation. The operation of pivots in the dry period, from May to August, is extremely costly, since almost all water demand must be supplied via irrigation, so few irrigators grow during the dry period.

The four main annual crops planted under center pivot in Brazil are soy, corn, beans and cotton. The cycle of beans and early soy varies between 90 and 100 days; late soy and corn about 120 days; and cotton from 150 to 180 days. In this way the farmer rotates such crops in a harvest year, depending on the price of inputs, agro-climatological conditions, and the price in the domestic and foreign markets. One of the very common practices is the rotation of early soy in the first harvest followed by corn in the second harvest; or late soy followed by cotton. In general, in the hubs with better rainfall (more rainy months), the farmer plants earlier and does two to three grain harvests, because they supplement possible crop deficits with irrigation, and can rotate between corn, soy, and beans during this period – as is the case of the Alto Teles Pires/MT hub. In drier regions, such as Western Bahia, the rainy season begins later, in October, concentrating mostly between December and April. Thus, the rotation of early soy with second harvest corn is more common to deal with the shorter rain calendar. Soy with cotton is another important pattern – cotton has a long cycle, but is tolerant to a certain water deficit, especially in the months before harvest, which usually occurs in the dry period.
Irrigated sugarcane is not predominant in the hubs, but occupies important areas in the pivot hubs of Rio das Almas/GO, Paracatu and Entre-Ribeiros/MG and Guaíra-Miguelópolis/MG/SP, and in the diversified hubs of Jaíba and Petrolina-Juazeiro.

The agricultural region of Petrolina/PE and Juazeiro/BA is the most developed region in the São Francisco River valley. Seven irrigation perimeters manage the distribution of water that reaches the crops through a dense infrastructure of channels, implemented in the 1960s with the purpose of developing this region located in the driest climate in Brazil. These are the perimeters: Bebedouro, Mandacaru, Maricá, Curaçá, Nilo Coelho, Tourão and Salitre. Fruit-growing is currently the main activity (2/3 of the total area) with emphasis on grapes and mango, but sugarcane also has significant irrigated area with high water use, due to the high evapotranspiration rate and low rainfall.

Like the Jaguaribe hub, the Jaíba hub also began as a public perimeter, established by CODEVASF in 1975 in the far North of Minas Gerais on the banks of the São Francisco River. Its irrigated areas are concentrated in the municipalities of Jaíba, Matias Cardoso and Itacarambi. If, initially, the hub was characterized by irrigation using micro-sprinklers and drip for fruit-growing, especially mango, lemon and banana, today it is more diversified, having corn and extensive sugarcane fields irrigated under center pivots.

The fourth and last hub where there is a diversity of crops and irrigation systems is Northern Espírito Santo. A fairly extensive area, covering almost all the municipalities between Linhares in the North-Central region of the state and Montanha in the far North, encompassing the basins of the Itaínas, São Mateus, Barra Seca and São José rivers as its main springs. In terms of irrigated area, there is a strong predominance of coffee, the conilon variety, in micro-sprinkler and drip systems; but papaya, coconut, black pepper and pineapple are also important. Irrigation under center pivots is concentrated in the far North of the state in the Itaúnas river basin, producing sugarcane, coffee and grains.

The three hubs of the semi-arid region do not have significant effective potential, requiring detailed assessment regarding water supply and alternatives for reuse and transfer of water from neighboring basins. The Espírito Santo hub has more significant areas that can be analyzed for expansion.

Hubs in satellite imagery

Image C - Border between the municipalities of Acaraú (CE), Icapuí (CE) and Tibau (RN) - Jaguaribe Irrigation Hub. Image CBERS 4A RGB 4/3/2 of 08/02/2020.

IRRIGATION

National Hubs - Other Typologies

JAGUARIBE / CHAPADA DO APODI
- **Irrigated crops:** Melon, banana, watermelon, papaya and rice
- **Current water demand:** 446 billion liters/year
- **Current irrigated area:** 35 thousand ha
- **Total physical and water potential:** 24% of the territory is irrigated
- **Main irrigating municipalities:** Limoeiro do Norte/CE, Mossoró/RN, Quixeré/CE, Baraúna/RN, Aracati/CE, Tibau/RN and Russas/CE

PETROLINA / JUAZEIRO
- **Irrigated crops:** Mango, sugarcane, grapes, coconut, guava and banana (perennial or semi-
- **Current water demand:** 1.5 trillion liters/year
- **Current irrigated area:** 32 thousand ha
- **Total physical and water potential:** 5% of the territory is irrigated
- **Main irrigating municipalities:** Juazeiro/BA, Petrolina/PE and Casa Nova/BA

JAÍBA
- **Irrigated crops:** Banana, sugarcane, lemon, corn and mango
- **Current water demand:** 397 billion liters/year
- **Current irrigated area:** 5 thousand ha
- **Total physical and water potential:** 24% of the territory is irrigated
- **Main irrigating municipalities:** Jaíba, Matias Cardoso, Itacarambi

NORTHERN ESPÍRITO SANTO
- **Irrigated crops:** Coffee, black pepper, papaya, coconut and banana
- **Current water demand:** 908 billion liters/year
- **Current irrigated area:** 81 thousand ha
- **Total physical and water potential:** 11% of the territory is irrigated
- **Main irrigating municipalities:** Linhares, São Mateus, Rio Bananal, Pinheiros, Vila Valério, Jaguari, Nova Venécia, Governador Lindenberg, Boa Esperança, Montanha, Águia Branca, São Domingos do Norte, Sooretama, São Gabriel da Palha
The identification of special management areas and the leverage of more detailed information in these regions, especially regarding the supply and demands for water, aid in decision-making with a view to making multiple uses compatible and ensuring water security of the productive activity. Refinement of the water balance also provides more detailed data for users’ risk estimates, which can result in both an increase and a reduction in the water accounted for by the management bodies in the authorization processes for use (grant).

It is worth highlighting the role of the Ministry of Regional Development (MDR) in the recent Irrigated Agriculture Hubs initiative (MDR Ordinance no. 1,082/2019, replaced by MDR Ordinance no. 2,154/2020) - part of the implementation of the National Irrigation Policy and to encourage regional development. It consists of an important strategy to leverage the activity, through joint work between the organizations of rural irrigating producers and the various governmental spheres.

Implementation of the MDR’s initiative involves the mobilization of actors, selection of technical partners, formation of management groups, definition and management of the project portfolio and prioritization of actions. Based on the special areas identified in the 2017 Irrigation Atlas and the articulation with producers and public agents, the MDR created eight Hubs in 2019 and 2020: Santa Maria (RS), Araguaia Valley (GO), Planalto Central/

São Marcos (GO), Western Bahia, Southern Mato Grosso, Southeastern São Paulo, Northwestern Minas Gerais and Northwestern Rio Grande do Sul. These hubs encompass a total of 119 municipalities.

The MDR hubs represent aggregations of communities within the same state, facilitating the implementation of irrigation policy actions; and these municipalities are defined in the installation workshop with local actors. Hubs delimited by ANA include the river basins (unit defined by the water resources policy) and the concentrations of current and potential irrigated areas.

In the sectoral sphere, the road to water security for irrigation requires continued recognition of irrigated agriculture hubs by both the MDR and the states. And, more importantly, monitoring and executing the actions foreseen in the project portfolio of these hubs.

In the sphere of the blue agenda, the hubs must be recognized by the management entities as areas of special interest for managing water resources (or similar instrument) so that the implementation of instruments such as the grant is improved with specific measures for these areas; and that in the respective water resource plans, the basin committees can discuss guidelines for management instruments and priorities for water use, intra-sectoral and inter-sectoral.
SUMMARY AND FINAL CONSIDERATIONS

Synthesis

Brazilian irrigated agriculture has a history of increasing and persistent development, often during unstable and negative periods of the Brazilian economy. In addition to this history is a great potential that can be exploited on a sustainable economic and environmental basis. However, the role of irrigation in increasing Brazilian agricultural production is still underestimated in view of its potential and the positive results it presents. Much of this ignorance is due to the lack of data and information and the lack of dissemination of activity in Brazilian society.

It is also worth noting that irrigated agriculture is essential for the population’s food supply. The necessary expansion of rice, beans and wheat production, for example, can occur with greater stimuli to irrigation, with zero deforestation. The production of higher value-added foods is also a vast field to be explored.

The Irrigation Atlas has among its objectives to contribute to the recognition of the importance of activity in society and to the economy of modern Brazilian irrigated agriculture and, at the same time, provides a robust technical basis for monitoring and planning the expansion of the sector, notably regarding water security for multiple uses.

Thus, the results presented in Atlas and its by-products (previous publications, databases and interactive content) allowed a refining of irrigated areas and water use by irrigated agriculture, in addition to providing a vision of the future of intensification or the emergence of new areas where conflicts may occur in Brazil.

With irrigated agriculture’s expansion prospect of 200 thousand hectares per year, generating an additional pressure of raw water abstraction of 2 trillion liters per year, this technical base will have its noblest use in technical development and decision-making on key topics for water security and production of the activity.

Among the main indicators consolidated by the Atlas, we highlight the following conclusions:
The gross value of irrigated production was at least **BRL 55 billion** in 2019 - 16 crops presented an annual value greater than BRL 1 billion.

Brazil totals 8.2 million hectares equipped for irrigation - 35.5% with fertigation with reuse water (2.9 Mha) and 64.5% with irrigation with spring water (5.3 Mha).

The private sector occupies 96.2% of the irrigated area. The area in production that belongs to public projects is 3.8% (200 thousand hectares), which generate 580 thousand direct and indirect jobs in 79 projects and 88 municipalities.

The demand for water abstraction from springs was 941 thousand liters per second in 2019 (average climate), which corresponds to 29.7 trillion liters per year.

The additional irrigable area is 55.85 million hectares (total physical and water potential). The effective potential is 13.69 Mha - 45% located in the Midwest, in particular in Mato Grosso and Goiás.

By 2040, it is estimated that 4.2 million hectares of irrigated land will be incorporated (+76%), with a smaller impact on the expansion of water use (+66%) due to the trend of expansion of more efficient methods.

The 28 National Irrigated Agriculture Hubs contain 50% of the irrigated area and 60% of the water demand, constituting special areas for sectoral and water resources management.
Interface of Water Resources with Agricultural and Irrigation Policies

The search for water security, current and future, of irrigated agriculture depends on an integrated effort of policies, institutions and management instruments. The Water Law (Law no. 9,433/1997) established the National Water Resources Policy and created the National Water Resources Management System (SINGREH) - its institutions are mainly deliberative (Water Resources Councils and River Basin Committees) or operational (Management Entities and Water Agencies).

The new National Irrigation Policy (Law no. 12,787/2013) provides, in some aspects, for the harmonization and integration of its instruments with those of the PNRH, but so far few provisions have been regulated or implemented. Despite this fragility, there is an opportunity for the PNI to develop while taking advantage of the results and lessons learned in the PNRH.

There is also the Agricultural Policy, which operates in agriculture as a whole, but already considers irrigation as a specific sector in some of its programs and projects.

Some of the central interface themes of the water resources and irrigation sector agendas are discussed below - agendas that are understood as being inherently integrated, but which have at their operational core different institutions responsible for their governance and implementation.

National Information Systems

Both policies (PNRH and PNI) legally instituted National Information Systems: the SNIRH (Water Resources), coordinated by ANA, is still being implemented (www.snirh.gov.br) and includes publications, maps, indicators, dynamic displays, as well as sub-systems such as REGLA (for issuing grants), Hidroweb (hydrological information) and the CNARH (user registry). The Irrigation Atlas database also makes up the SNIRH, which is made available in different formats.

The National Irrigation Information System - SNIRH did not progress as expected, and only developed only one initial module in the test phase for public projects (SISPPI – Information System on Public Irrigation Projects).

The PIN highlights which core information should be included in the SINIR: irrigated areas, exploited crops, irrigation methods; inventory of water resources and hydrological information; suitability mapping; agroclimatology; support infrastructure; availability of electricity; socioeconomic information about the irrigator; indicators on irrigated products (quantity, value) and public Federal areas suitable for irrigation projects. SINIR must also maintain a single national registry of irrigators (art. 8, paragraph 2). Among the objectives of the system are to provide support for the national and state/district irrigation plans and planning of the expansion of irrigated agriculture (art. 10).

This means that the technical basis on irrigated agriculture produced by ANA and made available via SNIRH has already aided in the implementation of both the National Water Resources Policy (PNRH), of which ANA is directly responsible, and the National Irrigation Policy (PNI), under the direct responsibility of the MDR. In addition, it contributes to sectoral planning conducted by the private sector and to sectoral public policies under the responsibility of the Ministry of Agriculture, Livestock and Food Supply (MAPA) and other public sector agents, in the different spheres of the federal government.

The way to achieve water security for irrigated agriculture is through jointy coordinated information systems among the responsible entities, and technical and financial conditions for its development and maintenance. Therefore, the SINIR will have more synergy and effectiveness if this system is interconnected to the SNIRH - it is understood that the systems will have some modules in common.

It is essential for the PNI regulation to define the MDR as the federal entity responsible for the unified coordination of SINIR, in close collaboration in the operationalization and interconnection of the systems (SINIR's operational core). With states, sectoral representations and other actors, the coordination of the MDR must be in the collecting and receiving of information, as well as in the formats in which the information is released to society.

Water Resource Plans and Irrigation Plans

In addition to establishing specific actions and an implementation agenda for water resources management, the water resource plans (PRH) guide the other management instruments (granting, classification, information system and collection). HRPs can also advance in auxiliary instruments that have a bearing on the others, such as in the determination of water use priorities and areas subject to use restriction. The PNI must be prepared by river basin, by state and for the Country.

In the national context, there is the National Water Resources Plan (PNRH), which contains strategic and structural elements of the National Water Resources Policy, and the river basin plans (PRHBH), which includes more operational elements. The two dimensions complement each other in collaborating to develop a governance strategy for water security. These plans continue to be prepared throughout Brazil (learn more at: http://conjuntura.ana.gov.br).

Another important benefit of the PRHBH is the areas subject to use restriction. The most recent PRHBH (Paranapanema, Paraguay and Grande) treat these areas as Priority Management Areas (APG). The constraints guiding the design of the APG can be addressed in several ways. For example, if the restriction is related to water quality, the framework targets should be the most restrictive. Thus, if the restriction of use is related to an aspect of water security, this aspect can guide the management actions in that APG.

The Irrigation Policy also provides for the plans as an instrument, and must be prepared in accordance with the Water Resources Plans (art. 6). Plans with national and state/district scope

<table>
<thead>
<tr>
<th>Institutional matrix of SINGREH</th>
</tr>
</thead>
<tbody>
<tr>
<td>National</td>
</tr>
<tr>
<td>State</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

* River basin agency or entity with similar legal function or state water resources management entity.
are foreseen. The National Irrigation Plan will guide the preparation of irrigation plans and projects by the states and the Federal District and will be decisive for the implementation of Federal irrigation projects.

The then Ministry of National Integration (MI), starting in 2009, in the context of the discussion of the new irrigation law, carried out some initiatives to implement State Irrigation Plans. The governmental articulation with the states to implement the plans advanced in some regions of the country, with the construction of the State Irrigation Plan of Tocantins, the Irrigated Agriculture Master Plan of the State of Minas Gerais, the Irrigation Master Plan in the context of Multiple Water Uses for Rio Grande do Sul and the Irrigated Agriculture Master Plan of the Federal District. These experiences and the difficulties of implementing actions should help to remodel the content of this type of plan with a focus on also establishing the necessary bridges for its effective implementation.

Based on this effort, in 2014, the MI, in partnership with IICA and the Luiz de Queiroz School of Agriculture (USP/ESALQ), prepared the "Territorial Analysis for the Development of Irrigated Agriculture" study as a first step towards the National Irrigation Plan.

The Irrigation Atlas can be adopted as a diagnosis and preliminary diagnosis of the National Irrigation Plan, and its results are submitted to a public sector consultation for debate, adjustments and complementation, with subsequent formalization of these steps. It would remain to supplement the plan with elements of the minimum content provided for in Law no. 12,787/2013. The MDR has been working on the Immediate Action Plan for Irrigated Agriculture, which may be the embryo for this final stage of the Plan. Another advantage of this arrangement refers to the fact that the Atlas will be the sectoral technical base in the 2022-2040 National Water Resources Plan, which is under preparation, which would allow the planning of both sectors to start from a common base, minimizing potential future conflicts by using divergent data.

Another important planning tool is the Regional Development Plan, recommended by the National Water Security Plan for a detailed and integrated analysis of the effectiveness of water supply associated with large potential supply driven works (designed primarily to induce development from the water supply, with no current effective demand). This concept was applied in the PNSH recognizing that water infrastructure should be treated only as one of the development variables, which is added to issues related to the investment capacity of the public and private sectors to install demands, the consumer market, energy supply, transportation logistics, environmental preservation, among others, to measure and qualify the induction of development based on water supply. Therefore, the feasibility of these induction projects cannot be confirmed a posteriori, as if the available infrastructure naturally leads to development.

Finally, the plans (water resources, irrigation and regional development) should give priority to the construction of their respective operational manuals (MOP). The MOP establishes, for the set of priority goals proposed by the plan, the roadmap for its practical implementation during the first years of its horizon, i.e., for the short term, detailing those responsible, the necessary procedures, the prerequisites and the intermediate and final results expected from each of these goals (see the MOP of the PIRH Paranapanema as an example: http://paranapanema.org/plano/mop/).

Environmental Service Charges and Payments

Charging for the use of water resources is another instrument instituted by the National Water Resources Policy. Its main objectives are: to recognize water as an economic asset and to give the user an indication of its real value; to encourage rational water use; and to obtain financial resources to finance the programs and interventions included in the water resource plans. For this, it is necessary to use methodologies to establish the amounts to be charged that consider economic mechanisms related to the value of water, in order to encourage users to review their grants to values more similar to the effective uses and implement optimization processes of their abstractions, in order to minimize waste, as well as of their effluent discharges, reducing the polluting potential.

The revenue from charges must be applied to the basin of origin. A positive agenda for water security lies in the greater participation of users and the establishment of plans for the application of resources where the price paid is fair and at the same time the amount can be used for actions in the basin. However, if the amounts charged are low or there is a lack of more accurate studies of economic viability, the investment capacity of the committees will tend to be very limited and the benefits of charging are not very sensitive to users.

Still in this vein of economic instruments, the Environmental Service Payments (PSA) initiatives have gained prominence in the planning of basins and other actions of environmental agencies and water resources. The PSA encourages producers to invest in water treatment care, receiving technical and financial support to implement conservation practices. To encourage the rural producer to invest in actions that help conserve water, ANA maintains the Water Producer Program (http://produtordeaguaana.gov.br/), which is an inspiration for other PSA initiatives and, in the future, can be thought of as a compensation or reinvestment mechanism associated with charges.

Credit Zoning and Rural Insurance

Credit and insurance are essential to the development of irrigation. Currently, there is no credit zoning that seeks to stimulate the development of irrigated areas with better aptitude and discourage producers from settling in risk zones (those with low or already depleted support capacity).

The Agricultural Climate Risk Zoning (ZARC) are important instruments for the guarantee and credit programs, which can be improved for the specificities of irrigation. However, the ZARC provide guidance right from the beginning by indicating planting periods that minimize weather adversities in sensitive stages of the crops.

Increasing water security for irrigation requires improving credit instruments in their main components (limits, interest, terms and grace periods). Currently, the credit is concentrated in the Irrigation and Storage Incentive Program (Moderinfra) of the Annual Agricultural and Livestock Plans – PAPs (since 2000/2001). Operations are carried out through accredited financial institutions.

The technical basis of the Irrigation Atlas, along with the ZARCs and other technical criteria, can be used for credit zoning, defining areas of high, medium and low risk, which ultimately contributes to the effectiveness of subsidized financing in its regional development function, mitigating the risk of credit itself.

Recently, ANA and IBGE published a study about water use and water deficits in rainfed agriculture (ANA & IBGE, 2020), which points out areas that have suffered recurrently with the water deficit. This base that makes up the Atlas also has potential zoning stimulus applications.

Rural insurance is another point to be improved for irrigation security. Investment in irrigation minimizes considerably, but does not eliminate the vulnerability of producers to other problems that the climate (such as hail) or operational issues can bring. Insurance can be applied to consider the specificities of irrigated production, including possible zoning (in space, time and per crop) to stimulate the increase in the production of key crops - such as beans and wheat in the dry period of the third harvest in the Cerrado biome.
Water Conservation

Dams (dams in a permanent or temporary watercourses, and associated structures) can be built for the purpose of containing and elevating the water level (water flow) or accumulation itself (reservoir). Water conservation for irrigation purposes also occurs in reservoirs built in parallel to watercourses or other reservoirs, supplied via pump, and are characterized not as dams, but as storage tanks.

The use of small dams and their effect on water availability is often not adequately accounted for in water balances, given the lack of knowledge of volumes and the low effect on water availability that is commonly adopted. The characterization of this supply in order to assist in the analysis of support capacity and in defining conservation policies (collective dams, for example) is also a challenge.

The comparison between water supply and demand water define the water balance. The estimation of water demands depends on precise information about irrigated areas, as well as climatic data and irrigation systems. The challenges of characterizing supply and demand in irrigation hubs, as well as outlining actions to address them, were analyzed in the Water Resource Plans (PRHs) recently prepared by ANA with the respective River Basin Committees, especially those of the Paraná, Paranapanema and Grande River basins, occupying a central role in the implementation strategy of the respective Plans.

Defining dams and reservoirs as social interest is a recurring demand of irrigators. Under the new forest code (Law no. 12,651/2012), the intervention or suppression of native vegetation in a Permanent Preservation Area will only occur in cases of public interest, social interest or low environmental impact (art. 8). Therefore, this characterization would facilitate the construction of necessary dams, reservoirs and facilities necessary for the accumulation, uptake and conduction of water to support agricultural production. The execution would continue to be subject to other environmental standards and incident legislation, such as the National Dam Safety Policy and the National Water Resources Policy.

It is understood that the expansion of reservoirs for irrigation, with or without their definition as of social interest, should be equated as a central element of water security for the sector. Different state regulations also cause asymmetries that can harm sustainable development. The definition of clear and operational rules from the environmental and water point of view will contribute to this positive agenda and priority should be given to larger and collective dams managed by the irrigators (or multiple use users) benefited by the project.

It should be noted that the unrestricted release for the construction of thousands of small reservoirs, without general rules, may create a false idea of water security, which in the short term will not be confirmed by the low water storage capacity of these reservoirs and by the interference that they can generate in reservoirs already installed downstream.

Final Considerations

Expansion of the irrigated area in the country has been taking place, and should continue to occur, along three main lines: public perimeters planned by government agencies; joint private initiatives, organized in the form of cooperatives or associations; and individual private initiatives.

The first case is usually linked to a more comprehensive design, in which the size of the project is compatible with the hydropower availability. However, its implementation suffers from discontinuities inherent to the changes of managers and the emancipation - handing over the management of the built infrastructure to the users, who have faced difficulties in obtaining financial self-sufficiency. The expansion of existing projects and planning new ones requires the implementation of firm local productive arrangements, agreed upon between the actors, and that are concerned with the chain from the input through to the consumer market.

The second and third cases are driven by the attractiveness and risk inherent in the private sector. Usually, the success of certain irrigators attracts others and the expansion follows market logic, not always adhering to government policies and local and regional planning. In this context, it is important to strengthen planning and organize the state’s role as an inducer and partner of this development, especially at the federal level, in articulation with states, municipalities and the private sector.

In any of the cases cited above, the expansion of irrigated agriculture in river basins with vulnerability between supply and demand for water resources and with low implementation of the National Water Resource Policy instruments increases the possibility that uses will approach or exceed supply at a certain time of the year. This is aggravated when water availability is lower than expected - which is natural in the hydrological regime - and can turn into water crises, causing uncertainties regarding water supply, straining the relationship of users established in the region and strengthening competitive uses between irrigators and these with other user sectors.

As a result, it is already observed that most of the river basins with quantitative criticality indicators in Brazil are mainly used for irrigated agriculture. Intra-sectoral conflicts (between irrigators) or conflicts with other sectors such as urban supply and power generation occur. Criticality occurs due to the high demands of irrigation, but also in regions with moderate demands, but with low water availability. With high potential for expansion and with the prospect of a relevant increase in water use for irrigation in the next 20 years, increased planning and management efforts are required.

This effort should increasingly consider the variation and perspectives of climate change, where irrigated agriculture is both a victim and an important adaptive measure to face water scarcity and extreme events. The increase in unit demand, on the other hand, will decrease the potential for expansion of the activity, which will be added to the decrease in supply in the springs.

Given this context and the importance of the sector for Brazilian society and for managing water resources, ANA has been working on refining data and information through studies and partnerships, which not only qualify the Agency’s operations but also make products available that are used in both the private and governmental spheres - especially in the development of policies for the sector. In this edition of the Atlas, it was possible to make significant progress in the consistency of the surveys of irrigated areas and in the consolidation of water use estimates in the national territory. This depiction of current irrigation and planning for the future has been crucial to decreasing uncertainty.

The preparation and implementation of sectoral planning in an integrated manner with water resource planning (blue agenda) is essential for economic activity to develop in a sustainable
manner, both in expansion areas and in those already consolidated. The irrigated agriculture hubs (national, regional or local) are crucial territorial units for the sector’s planning and implementation of the instruments of irrigation and water resource policies. The delimitation of these areas and the detailing of their attributes provide focus for management and serve as an example to develop other initiatives.

Decisions at the property level alone can cause collective negative impacts in a river basin. The organization of water users, at the level of the basin – within the limits imposed by the respective authorizations for water use and with the monitoring of management entities – empowers irrigators in risk analysis and management. It also facilitates communication and the creation of consensus, and may even result in proposals for revising grant criteria, user training, and the creation of areas subject to use restriction. This local governance (political leaders, public agents, producers and their representations) also allows greater continuity of the implemented actions.

The development and implementation of strategies to increase the water security of irrigated agriculture become even more relevant at this time of strengthening the Agricultural Policy in terms of irrigation, including the proposals for the regulation of provisions of the National Irrigation Policy. This discussion is even more strategic during the preparation of the 2022-2040 National Water Resources Plan, a key instrument in the new implementation cycle of the Water Resources Policy.

Finally, we reiterate that this technical base created over the last few years will continue to be the object of continuous improvement, which depends on the strengthening of partnerships with state and federal public agencies (MDR, MAPA, Conab, Embrapa, IBGE); international organizations (FAO, USGS); the user sector (cooperatives, unions and other irrigation representation); specialized consulting firms; and universities and research centers. Translated with www.DeepL.com/Translator (free version).

As carried out between the first and second edition (2017-2021), the Irrigation Atlas will remain a technical base that is constantly being updated, with consolidated results always made available to society on the SNIRH (www.snirh.gov.br) and on ANA’s communication channels.
IRRIGATION

In its second edition, the Irrigation Atlas: irrigated water use updates and expands the technical basis on Brazilian irrigation in its interface with water resources, constituting itself as a reference for various areas of knowledge and for public policies. Ultimately, it seeks to contribute to the water security of irrigated agriculture and other water uses. The Atlas gains even more importance by becoming a common basis for both the National Irrigation Policy and the National Water Resources Policy, also considering the ongoing preparation of the 2022-2040 National Water Resources Plan.